2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC
|
2023年
基金:
加拿大自然科学与工程研究理事会;
关键词:
Activity detection;
IoT;
deep learning;
NOMA;
massive MIMO;
D O I:
10.1109/ICNC57223.2023.10074280
中图分类号:
TP3 [计算技术、计算机技术];
学科分类号:
0812 ;
摘要:
Recently, grant-free transmission paradigm has been introduced for massive Internet of Things (IoT) networks to save both time and bandwidth and transmit the message with low latency. In order to accurately decode the message of each device at the base station (BS), first, the active devices at each transmission frame must be identified. In this work, first we investigate the problem of activity detection as a threshold comparing problem. We show the convexity of the activity detection method through analyzing its probability of error which makes it possible to find the optimal threshold for minimizing the activity detection error. Consequently, to achieve an optimum solution, we propose a deep learning (DL)-based method called convolutional neural network (CNN)-activity detection (AD). In order to make it more practical, we consider unknown and time-varying activity rate for the IoT devices. Our simulations verify that our proposed CNN-AD method can achieve higher performance compared to the existing non-Bayesian greedy-based methods. This is while existing methods need to know the activity rate of IoT devices, while our method works for unknown and even time-varying activity rates.