Pore network modeling of a microporous layer for polymer electrolyte fuel cells under wet conditions

被引:8
作者
Nakajima, Hironori [1 ,2 ]
Iwasaki, Shintaro [2 ]
Kitahara, Tatsumi [1 ,2 ]
机构
[1] Kyushu Univ, Fac Engn, Dept Mech Engn, 744,Motooka,Nishi Ku, Fukuoka 8190395, Japan
[2] Kyushu Univ, Grad Sch Engn, Dept Hydrogen Energy Syst, 744,Motooka,Nishi Ku, Fukuoka 8190395, Japan
基金
日本学术振兴会;
关键词
Microporous layer; Pore network model; Pore size distribution; Liquid saturation; Wetting liquid; Effective diffusion coefficient; GAS-DIFFUSION LAYERS; WATER TRANSPORT; PERFORMANCE ENHANCEMENT; PEFC; MANAGEMENT; FLOW;
D O I
10.1016/j.jpowsour.2023.232677
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The gas diffusion layers (GDLs) of polymer electrolyte fuel cells have been developed with applying microp-orous layers (MPLs) in their catalyst layer (CL) side to alleviate the accumulation of liquid water in the CL for oxygen transport to the cathode CL. A three-dimensional porous structure of our in-house hydrophobic MPL is numerically modeled with a pore network model (PNM). The convective air permeability and oxygen diffusivity, which depend on liquid saturation, are evaluated. To construct the PNM, focused ion beam scanning electron microscopy (FIB-SEM) is used to derive the pore size distribution (PSD). The model is ex-situ validated through air permeability and oxygen diffusivity tests with controlled saturation of non-volatile wetting liquid that is stable in the hydrophobic MPL. Oxygen diffusivity of the MPL is obtained by identifying the diffusion resistances of the concentration boundary layers and GDL substrate in the tests. The model predicts the effects of liquid water saturation in the MPL on the air and liquid water permeations, and the oxygen diffusion, and thus can be used to design optimal PSDs for practical cells.
引用
收藏
页数:7
相关论文
共 28 条
[1]  
[Anonymous], 2006, Transport Phenomena
[2]  
[Anonymous], OP POR NETW MOD FRAM
[3]   Analysis of Water Transport inside Hydrophilic Carbon Fiber Micro-Porous Layers with High-Performance Operation in PEFC [J].
Aoyama, Yusuke ;
Tabe, Yutaka ;
Nozaki, Ryo ;
Suzuki, Kengo ;
Chikahisa, Takemi ;
Tanuma, Toshihiro .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (07) :F484-F491
[4]   Superhydrophobic fluorinated carbon powders for improved water management in hydrogen fuel cells [J].
Can, E. M. ;
Mufundirwa, A. ;
Wang, P. ;
Iwasaki, S. ;
Kitahara, T. ;
Nakajima, H. ;
Nishihara, M. ;
Sasaki, K. ;
Lyth, S. M. .
JOURNAL OF POWER SOURCES, 2022, 548
[5]  
Chen D., 2018, PROC NATL S POWER EN, V23, pC114, DOI [10.1299/jsmepes.2018.23.C114, DOI 10.1299/JSMEPES.2018.23.C114]
[6]   Transport Parameter Correlations for Digitally Created PEFC Gas Diffusion Layers by Using OpenPNM [J].
Encalada-Davila, Angel ;
Espinoza-Andaluz, Mayken ;
Barzola-Monteses, Julio ;
Li, Shian ;
Andersson, Martin .
PROCESSES, 2021, 9 (07)
[7]   Incorporating Embedded Microporous Layers into Topologically Equivalent Pore Network Models for Oxygen Diffusivity Calculations in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers [J].
Fazeli, Mohammadreza ;
Hinebaugh, James ;
Bazylak, Aimy .
ELECTROCHIMICA ACTA, 2016, 216 :364-375
[8]  
Geankoplis ChristieJohn., 2014, TRANSPORT PROCESSES
[9]   OpenPNM: A Pore Network Modeling Package [J].
Gostick, Jeff ;
Aghighi, Mahmoudreza ;
Hinebaugh, James ;
Tranter, Tom ;
Hoeh, Michael A. ;
Day, Harold ;
Spellacy, Brennan ;
Sharqawy, Mostafa H. ;
Bazylak, Aimy ;
Burns, Alan ;
Lehnert, Werner ;
Putz, Andreas .
COMPUTING IN SCIENCE & ENGINEERING, 2016, 18 (04) :60-74
[10]   Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells [J].
Gostick, Jeff T. ;
Ioannidis, Marios A. ;
Fowler, Michael W. ;
Pritzker, Mark D. .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :277-290