Superior lithium storage performance in MoO3 by synergistic effects: Oxygen vacancies and nanostructures

被引:30
作者
Hou, Xueyang [1 ]
Ruan, Miao [1 ]
Zhou, Lijiao [2 ]
Wu, Jianchun [3 ]
Meng, Bicheng [1 ]
Huang, Wenlong [1 ]
Zhong, Kenan [1 ]
Yang, Kai [1 ]
Fang, Zhao [1 ]
Xie, Keyu [2 ]
机构
[1] Xian Univ Architecture & Technol, Sch Met Engn, Xian 710055, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Ctr Nano Energy Mat, Sch Mat Sci & Engn, Xian 710072, Shaanxi, Peoples R China
[3] Sichuan Univ, Sch Nucl Sci & Technol, Chengdu 610064, Sichuan, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2023年 / 78卷
基金
中国国家自然科学基金;
关键词
2D materials; MoO3_x; Electron proton co-doping; Lithium-ion anode; Molybdenum oxide ore; ENHANCED ELECTRODE-KINETICS; ION BATTERIES; ELECTROCHEMICAL PROPERTIES; MOLYBDENUM TRIOXIDE; ALPHA-MOO3; NANOBELT; PLASMON RESONANCES; ANODE MATERIAL; NANOSHEETS; CONVERSION; ENERGY;
D O I
10.1016/j.jechem.2022.11.011
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Molybdenum trioxide (MoO3) has recently attracted wide attention as a typical conversion-type anode of Li-ion batteries (LIBs). Nevertheless, the inferior intrinsic conductivity and rapid capacity fading during charge/discharge process seriously limit large-scale commercial application of MoO3. Herein, the density function theory (DFT) calculations show that electron-proton co-doping preferentially bonds symmetric oxygen to form unstable HxMoO3. When the -OH-group in HxMoO3 is released into the solution in the form of H2O, it is going to form MoO3_x with lower binding energy. By the means of both electron-proton co-doping and high-energy nanosizing, oxygen vacancies and nanoflower structure are introduced into MoO3 to accelerate the ion and electronic diffusion/transport kinetics. Benefitting from the promotion of ion diffusion kinetics related to nanostructures, as well as both the augmentation of active sites and the improvement of electrical conductivity induced by oxygen vacancies, the MoO3_x/nanoflower struc-tures show excellent lithium-ion storage performance. The prepared specimen has a high lithium-ion storage capacity of 1261 mA h g_1 at 0.1 A g_1 and cyclic stability (450 cycle), remarkably higher than those of previously reported MoO3-based anode materials.(c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:91 / 101
页数:11
相关论文
共 58 条
[1]   Synthesis and electrochemical characterization of pseudocapacitive α-MoO3 thin film as transparent electrode material in optoelectronic and energy storage devices [J].
Adewinbi, Saheed A. ;
Taleatu, Bidini A. ;
Busari, Rafiu A. ;
Maphiri, Vusani M. ;
Oyedotun, Kabir O. ;
Manyala, Ncholu .
MATERIALS CHEMISTRY AND PHYSICS, 2021, 264
[2]   Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes [J].
Ahmed, B. ;
Shahid, Muhammad ;
Nagaraju, D. H. ;
Anjum, D. H. ;
Hedhili, Mohamed N. ;
Alshareef, H. N. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (24) :13154-13163
[3]   Exfoliation Solvent Dependent Plasmon Resonances in Two-Dimensional Sub-Stoichiometric Molybdenum Oxide Nanoflakes [J].
Alsaif, Manal M. Y. A. ;
Field, Matthew R. ;
Daeneke, Torben ;
Chrimes, Adam F. ;
Zhang, Wei ;
Carey, Benjamin J. ;
Berean, Kyle J. ;
Walia, Sumeet ;
van Embden, Joel ;
Zhang, Baoyue ;
Latham, Kay ;
Kalantar-zadeh, Kourosh ;
Ou, Jian Zhen .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (05) :3482-3493
[4]   High-Performance Field Effect Transistors Using Electronic Inks of 2D Molybdenum Oxide Nanoflakes [J].
Alsaif, Manal M. Y. A. ;
Chrimes, Adam F. ;
Daeneke, Torben ;
Balendhran, Sivacarendran ;
Bellisario, Darin O. ;
Son, Youngwoo ;
Field, Matthew R. ;
Zhang, Wei ;
Nili, Hussein ;
Nguyen, Emily P. ;
Latham, Kay ;
van Embden, Joel ;
Strano, Michael S. ;
Ou, Jian Zhen ;
Kalantar-zadeh, Kourosh .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (01) :91-100
[5]   Tunable Plasmon Resonances in Two-Dimensional Molybdenum Oxide Nanoflakes [J].
Alsaif, Manal M. Y. A. ;
Latham, Kay ;
Field, Matthew R. ;
Yao, David D. ;
Medehkar, Nikhil V. ;
Beane, Gary A. ;
Kaner, Richard B. ;
Russo, Salvy P. ;
Ou, Jian Zhen ;
Kalantar-zadeh, Kourosh .
ADVANCED MATERIALS, 2014, 26 (23) :3931-3937
[6]   Two-Dimensional Molybdenum Trioxide and Dichalcogenides [J].
Balendhran, Sivacarendran ;
Walia, Sumeet ;
Nili, Hussein ;
Ou, Jian Zhen ;
Zhuiykov, Serge ;
Kaner, Richard B. ;
Sriram, Sharath ;
Bhaskaran, Madhu ;
Kalantar-zadeh, Kourosh .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (32) :3952-3970
[7]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[8]   Non-catalytic hydrogenation of VO2 in acid solution [J].
Chen, Yuliang ;
Wang, Zhaowu ;
Chen, Shi ;
Ren, Hui ;
Wang, Liangxin ;
Zhang, Guobin ;
Lu, Yalin ;
Jiang, Jun ;
Zou, Chongwen ;
Luo, Yi .
NATURE COMMUNICATIONS, 2018, 9
[9]   Molybdenum Oxides - From Fundamentals to Functionality [J].
de Castro, Isabela Alves ;
Datta, Robi Shankar ;
Ou, Jian Zhen ;
Castellanos-Gomez, Andres ;
Sriram, Sharath ;
Daeneke, Torben ;
Kalantar-zadeh, Kourosh .
ADVANCED MATERIALS, 2017, 29 (40)
[10]   3D Ordered Macroporous MoS2@C Nanostructure for Flexible Li-Ion Batteries [J].
Deng, Zongnan ;
Jiang, Hao ;
Hu, Yanjie ;
Liu, Yu ;
Zhang, Ling ;
Liu, Honglai ;
Li, Chunzhong .
ADVANCED MATERIALS, 2017, 29 (10)