Effect of antibiotics on the performance of moving bed biofilm reactor for simultaneous removal of nitrogen, phosphorus and copper(II) from aquaculture wastewater

被引:8
作者
Cao, Ying [1 ]
Huang, Ruiheng [1 ]
Li, Tenghao [1 ]
Pan, Dandan [1 ]
Shao, Sicheng [1 ]
Wu, Xiangwei [1 ]
机构
[1] Anhui Agr Univ, Coll Resources & Environm, Key Lab Agrifood Safety Anhui Prov, Hefei 230036, Peoples R China
基金
安徽省自然科学基金;
关键词
Denitrification; Cu2+; Microbial community; Bioremediation; MICROBIAL COMMUNITY; DEGRADATION; CD; CU; RESPONSES; MEMBRANE; PRODUCTS; CATION; RATIO; AREA;
D O I
10.1016/j.ecoenv.2023.115590
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Co-existence of NO3--N, antibiotics, phosphorus (P), and Cu2+ in aquaculture wastewater has been frequently detected, but simultaneous removal and relationship between enzyme and pollutants removal are far from satisfactory. In this study, simultaneous removal of NO3--N, P, antibiotics, and Cu2+ by moving bed biofilm reactor (MBBR) was established. About 95.51 +/- 3.40% of NO3--N, 61.24 +/- 3.51% of COD, 18.74 +/- 1.05% of TP, 88% of Cu2+ were removed synchronously in stage I, and antibiotics removal in stages I-IV was 73.00 +/- 1.32%, 79.53 +/- 0.88%, 51.07 +/- 3.99%, and 33.59 +/- 2.73% for tetracycline (TEC), oxytetracycline (OTC), chlortetracycline hydrochloride (CTC), sulfamethoxazole (SMX), respectively. The removal kinetics and toxicity of MBBR effluent were examined, indicating that the first order kinetic model could better reflect the removal of NO3--N, TN, and antibiotics. Co-existence of multiple antibiotics and Cu2+ was the most toxicity to E. coli growth. Key enzyme activity, reactive oxygen species (ROS) level, and its relationship with TN removal were investigated. The results showed that enzymes activities were significantly different under the co-existence of antibiotics and Cu2+. Meanwhile, different components of biofilm were extracted and separated, and enzymatic and non enzymatic effects of biofilm were evaluated. The results showed that 70.00%-94.73% of Cu2+ was removed by extracellular enzyme in stages I-V, and Cu2+ removal was mainly due to the action of extracellular enzyme. Additionally, microbial community of biofilm was assessed, showing that Proteobacteria, Bacteroidetes, and Gemmatimonadetes played an important role in the removal of NO3--N, Cu2+, and antibiotics at the phylum level. Finally, chemical bonds of attached and detached biofilm were characterized by X-ray photoelectron spectroscopy (XPS), and effect of nitrogen (N) and P was proposed under the co-existence of antibiotics and Cu2+. This study provides a theoretical basis for further exploring the bioremediation of NO3--N, Cu2+, and antibiotics in aquaculture wastewater.
引用
收藏
页数:12
相关论文
共 50 条
[22]   Performance of nitrification-denitrification and denitrifying phosphorus removal driven by in-situ generated biogenic manganese oxides in a moving bed biofilm reactor [J].
Zhong, Jinfeng ;
Liu, Jiamin ;
Hu, Rui ;
Pan, Dandan ;
Shao, Sicheng ;
Wu, Xiangwei .
BIORESOURCE TECHNOLOGY, 2023, 377
[23]   Removal of aniline, cyanides and diphenylguanidine from industrial wastewater using a full-scale moving bed biofilm reactor [J].
Dvorak, L. ;
Lederer, T. ;
Jirku, V. ;
Masak, J. ;
Novak, L. .
PROCESS BIOCHEMISTRY, 2014, 49 (01) :102-109
[24]   Co-treatment of shale-gas produced water and municipal wastewater: Removal of nitrogen in a moving-bed biofilm reactor [J].
Zhuang, Yiling ;
Zhang, Zhaoji ;
Zhou, Zejun ;
Chen, Minquan ;
Li, Junjie ;
Chen, Shaohua .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2019, 126 :269-277
[25]   Study of moving bed biofilm reactor in diethyl phthalate and diallyl phthalate removal from synthetic wastewater [J].
Ahmadi, Ehsan ;
Gholami, Mitra ;
Farzadkia, Mahdi ;
Nabizadeh, Ramin ;
Azari, Ali .
BIORESOURCE TECHNOLOGY, 2015, 183 :129-135
[26]   Phenol removal performance and microbial community shift during pH shock in a moving bed biofilm reactor (MBBR) [J].
Zhou, Hao ;
Wang, Guochen ;
Wu, Minghuo ;
Xu, Weiping ;
Zhang, Xuwang ;
Liu, Lifen .
JOURNAL OF HAZARDOUS MATERIALS, 2018, 351 :71-79
[27]   Improved toluene vapor removal in a moving bed biofilm reactor (MBBR): Performance, microbial dynamics, and kinetic study [J].
Hooshmand, Saber ;
Zamir, Seyed Morteza .
BIOCHEMICAL ENGINEERING JOURNAL, 2025, 222
[28]   Simultaneous removal of aniline, nitrogen and phosphorus in aniline-containing wastewater treatment by using sequencing batch reactor [J].
Jiang, Yu ;
Wang, Hongyu ;
Shang, Yu ;
Yang, Kai .
BIORESOURCE TECHNOLOGY, 2016, 207 :422-429
[29]   PERFORMANCE OF MOVING BED BIOFILM REACTORS FOR BIOLOGICAL NITROGEN COMPOUNDS REMOVAL FROM WASTEWATER BY PARTIAL NITRIFICATION-DENITRIFICATION PROCESS [J].
Zafarzadeh, A. ;
Bina, B. ;
Nikaeen, M. ;
Attar, H. Movahedian ;
Nejad, M. Hajian .
IRANIAN JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING, 2010, 7 (04) :353-364
[30]   Application of bioplastic moving bed biofilm carriers for the removal of synthetic pollutants from wastewater [J].
Accinelli, Cesare ;
Sacca, Maria Ludovica ;
Mencarelli, Mariangela ;
Vicari, Alberto .
BIORESOURCE TECHNOLOGY, 2012, 120 :180-186