FSO Communications Over Doubly Inverted Gamma-Gamma Turbulence Channels With Nonzero-Boresight Pointing Errors

被引:7
作者
Badarneh, Osamah S. [1 ]
El Bouanani, Faissal [2 ]
Almehmadi, Fares S. [3 ]
Silva, Hugerles S. [4 ,5 ,6 ]
机构
[1] German Jordanian Univ, Sch Elect Engn & Informat Technol, Elect Engn Dept, Amman 11180, Jordan
[2] Mohammed V Univ Rabat, ENSIAS, Rabat 10000, Morocco
[3] Univ Tabuk, Elect Engn Dept, Tabuk 71491, Saudi Arabia
[4] Univ Aveiro, Inst Telecomunicacoes, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[5] Univ Aveiro, Dept Eletron Telecomunicacoes & Informat, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[6] Univ Brasilia, Dept Elect Engn, BR-70910900 Brasilia, Brazil
关键词
FSO; pointing error; turbulence channel; DISTRIBUTION MODEL; SPACE; TRANSMISSION;
D O I
10.1109/LWC.2023.3292330
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, the recently proposed doubly inverted Gamma-Gamma (IGGG) turbulence channel model is considered to analyze the performance of a free-space optical communication system. To this end, the probability density function (PDF) and cumulative distribution function (CDF) of the irradiance fluctuations of an optical wave propagating through an IGGG turbulence channel under nonzero-boresight pointing errors are derived. Furthermore, the PDF and CDF under zero-boresight pointing errors are obtained as a special case. To study the impact of nonzero-boresight pointing error parameters and turbulence condition on the system performance, exact closed-form expressions for outage probability, bit error rate, and average capacity under intensity modulation/direct detection are derived. Besides, asymptotic analysis is provided which help us to identify the diversity gain of the system. The analytical analyzes are verified through numerical and Monte-Carlo simulation results.
引用
收藏
页码:1761 / 1765
页数:5
相关论文
共 17 条
  • [1] Generic evaluation of FSO system over Malaga turbulence channel with MPPM and non-zero-boresight pointing errors
    Alshaer, Nancy
    Ismail, Tawfik
    Nasr, Mohamed E.
    [J]. IET COMMUNICATIONS, 2020, 14 (18) : 3294 - 3302
  • [2] Badarneh Osamah S., 2022, 2022 European Conference on Communication Systems (ECCS), P33, DOI 10.1109/ECCS54035.2022.00015
  • [3] Performance Analysis of Terahertz Communications in Random Fog Conditions With Misalignment
    Badarneh, Osamah S.
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (05) : 962 - 966
  • [4] Inverse Gaussian gamma distribution model for turbulence-induced fading in free-space optical communication
    Cheng, Mingjian
    Guo, Ya
    Li, Jiangting
    Zheng, Xiaotong
    Guo, Lixin
    [J]. APPLIED OPTICS, 2018, 57 (12) : 3031 - 3037
  • [5] Gradshteyn IS., 2007, TABLE INTEGRALS SERI
  • [6] Jurado-Navas A, 2011, NUMERICAL SIMULATIONS OF PHYSICAL AND ENGINEERING PROCESSES, P181
  • [7] A Novel Statistical Channel Model for Turbulence-Induced Fading in Free-Space Optical Systems
    Kashani, Mohammadreza A.
    Uysal, Murat
    Kavehrad, Mohsen
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (11) : 2303 - 2312
  • [8] Kilbas A., 2004, H TRANSFORMS THEORY, DOI 10.1201/9780203487372
  • [9] A new polynomial approximation for Jv Bessel functions
    Li, L-L.
    Li, F.
    Gross, F. B.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (02) : 1220 - 1225
  • [10] The Fischer-Snedecor F-Distribution Model for Turbulence-Induced Fading in Free-Space Optical Systems
    Peppas, Kostas P.
    Alexandropoulos, George C.
    Xenos, Evangelos D.
    Maras, Andreas
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (06) : 1286 - 1295