An effective multitask neural networks for predicting mechanical properties of steel

被引:4
作者
Ban, Yunqi [1 ,2 ]
Hou, Jianxin [1 ,2 ]
Wang, Xianpeng [3 ]
Zhao, Guodong [4 ]
机构
[1] Northeastern Univ, Natl Frontiers Sci Ctr Ind Intelligence & Syst Opt, Shenyang 110819, Peoples R China
[2] Northeastern Univ, Key Lab Data Analyt & Optimizat Smart Ind, Minist Educ, Shenyang 110819, Peoples R China
[3] Liaoning Engn Lab Data Analyt & Optimizat Smart In, Shenyang 110819, Peoples R China
[4] Liaoning Key Lab Mfg Syst & Logist Optimizat, Shenyang 110819, Peoples R China
基金
国家自然科学基金重大项目;
关键词
Metals and alloys; Machine learning; Multitask; Neural network; Mechanical properties; CARBON; MICROSTRUCTURE; DESIGN;
D O I
10.1016/j.matlet.2023.135236
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An effective multitask neural network was carried out to predict the mechanical properties of steels based on their chemical compositions. The multitask neural network model outperforms other neural networks, and conventional algorithms. It achieved high prediction accuracy for both tensile strength and elongation, with R2 values of 0.9204 and 0.9409, respectively. Benefiting from the strong inter-task relationships, the multitask neural network enhances performance and parameter efficiency by sharing a potent representation across tasks. Additionally, we analyzed the influence of chemical composition on mechanical properties using the model's parameters, providing valuable insights into the relationship between different chemical compositions and the mechanical properties of steels.
引用
收藏
页数:5
相关论文
共 50 条
[31]   Phase Transformation and Mechanical Properties of an Ultrahigh Strength Steel [J].
Chatterjee, S. ;
Ghosh, S. K. ;
Bandyopadhyay, P. S. ;
Mishra, Sanak .
JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2011, 18 :192-199
[32]   Predicting the Corrosion Rate of Medium Carbon Steel Using Artificial Neural Networks [J].
Almomani, Mohammed A. ;
Momani, Amer M. ;
Abdelnabi, Ahmad A. Bany ;
Al-Zqebah, Ruba S. ;
Al-Batah, Mohammad S. .
PROTECTION OF METALS AND PHYSICAL CHEMISTRY OF SURFACES, 2022, 58 (02) :414-421
[33]   Predicting Temperatures Inside a Steel Slab Reheating Furnace Using Neural Networks [J].
Lima, Rodrigo de Souza ;
Scardua, Leonardo Azevedo ;
de Almeida, Gustavo Maia .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2025, 61 (03) :5273-5282
[34]   A comparison of multitask and single task learning with artificial neural networks for yield curve forecasting [J].
Nunes, Manuel ;
Gerding, Enrico ;
McGroarty, Frank ;
Niranjan, Mahesan .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 119 :362-375
[35]   Identification of factors governing mechanical properties of TRIP-aided steel using genetic algorithms and neural networks [J].
Datta, Shubhabrata ;
Pettersson, Frank ;
Ganguly, Subhas ;
Saxen, Henrik ;
Chakraborti, Nirupam .
MATERIALS AND MANUFACTURING PROCESSES, 2008, 23 (02) :130-137
[36]   Affect Classification in Tweets using Multitask Deep Neural Networks [J].
Nagar, Seema ;
Shankhdhar, Achintya ;
Barbhuiya, Ferdous Ahmed ;
Dey, Kuntal .
WEB CONFERENCE 2021: COMPANION OF THE WORLD WIDE WEB CONFERENCE (WWW 2021), 2021, :516-520
[37]   Predicting mechanical properties of fused panel [J].
Jevsnik, S .
FIBRES & TEXTILES IN EASTERN EUROPE, 2000, 8 (02) :54-56
[38]   Predicting mechanical properties of veneer plywood [J].
Kljak, Jaroslav ;
Brezovic, Mladen ;
Ambrekovic, Vladimir ;
Antonovic, Alan .
WOOD IN THE CONSTRUCTION INDUSTRY: DURABILITY AND QUALITY OF WOODEN CONSTRUCTION PRODUCTS, PROCEEDINGS, 2005, :89-92
[39]   Predicting the Mechanical Properties of Supramolecular Gels [J].
Simpson, Jack D. ;
Thomson, Lisa ;
Woodley, Christopher M. ;
Wallace, Chloe M. ;
Dietrich, Bart ;
Loch, Alex S. ;
Adams, Dave J. ;
Berry, Neil G. .
ADVANCED MATERIALS, 2025, 37 (08)
[40]   Achieving antimicrobial and superior mechanical properties in a scalable and cost-effective heterostructured stainless steel [J].
Romero-Resendiz, L. ;
Kong, H. J. ;
Zhang, T. ;
Ni, H. ;
Chen, S. ;
Naeem, M. ;
Zhu, Y. T. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 886