Central Extensions and Groups with Quotients Periodic Infinite

被引:0
|
作者
Atabekyan, V. S. [1 ]
机构
[1] Yereven State Univ, Fac Math & Mech, Alex Manoogian 1, Yerevan 0025, Armenia
来源
ADVANCES IN GROUP THEORY AND APPLICATIONS | 2023年 / 16卷
关键词
periodic product; central extension; Burnside group; PRODUCTS;
D O I
10.32037/agta-2023-008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an arbitrary family of groups without involutions and any Abelian group D we construct a group AD(G) such that the center of AD(G) coincides with D, and the quotient group of the group AD(G) by the subgroup D coincides with the n-periodic product of the given family of groups. In particular, as an application, 2-generated non-simple and non-periodic Hopfian groups are constructed, any proper non-trivial quotient of which is infinite periodic. The construction is based on some modification of the method used by S.I. Adian for a positive solution of the known problem on the existence of non-commutative analogues of the additive group of rational numbers.
引用
收藏
页码:67 / 79
页数:13
相关论文
共 50 条
  • [21] Extensions of Finite Quantum Groups by Finite Groups
    N. Andruskiewitsch
    G. A. García
    Transformation Groups, 2009, 14 : 1 - 27
  • [22] Central extensions of axial algebras
    Kaygorodov, Ivan
    Gonzalez, Candido Martin
    Paez-Guillan, Pilar
    JOURNAL OF ALGEBRA, 2025, 662 : 797 - 831
  • [23] Central Extensions of Precrossed Modules
    Daniel Arias
    Manuel Ladra
    Applied Categorical Structures, 2004, 12 : 339 - 354
  • [24] Central extensions of precrossed modules
    Arias, D
    Ladra, M
    APPLIED CATEGORICAL STRUCTURES, 2004, 12 (04) : 339 - 354
  • [25] INFINITE PRESENTABILITY OF GROUPS AND CONDENSATION
    Bieri, Robert
    Cornulier, Yves
    Guyot, Luc
    Strebel, Ralph
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2014, 13 (04) : 811 - 848
  • [26] Infinite Groups of Finite Period
    Mazurov, V. D.
    Ol'shanskii, A. Yu.
    Sozutov, A. I.
    ALGEBRA AND LOGIC, 2015, 54 (02) : 161 - 166
  • [27] Extensions of amenable groups by recurrent groupoids
    Juschenko, Kate
    Nekrashevych, Volodymyr
    de la Salle, Mikael
    INVENTIONES MATHEMATICAE, 2016, 206 (03) : 837 - 867
  • [28] Periodic products of groups
    S. I. Adian
    V. S. Atabekyan
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2017, 52 : 111 - 117
  • [29] Central extensions of filiform Zinbiel algebras
    Camacho, Luisa M.
    Karimjanov, Iqboljon
    Kaygorodov, Ivan
    Khudoyberdiyev, Abror
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08) : 1479 - 1495
  • [30] ON THE CENTRAL EXTENSIONS OF CLASSICAL LIE ALGEBRAS
    Ibraev, S. S.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 450 - 453