Central Extensions and Groups with Quotients Periodic Infinite

被引:0
|
作者
Atabekyan, V. S. [1 ]
机构
[1] Yereven State Univ, Fac Math & Mech, Alex Manoogian 1, Yerevan 0025, Armenia
来源
ADVANCES IN GROUP THEORY AND APPLICATIONS | 2023年 / 16卷
关键词
periodic product; central extension; Burnside group; PRODUCTS;
D O I
10.32037/agta-2023-008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an arbitrary family of groups without involutions and any Abelian group D we construct a group AD(G) such that the center of AD(G) coincides with D, and the quotient group of the group AD(G) by the subgroup D coincides with the n-periodic product of the given family of groups. In particular, as an application, 2-generated non-simple and non-periodic Hopfian groups are constructed, any proper non-trivial quotient of which is infinite periodic. The construction is based on some modification of the method used by S.I. Adian for a positive solution of the known problem on the existence of non-commutative analogues of the additive group of rational numbers.
引用
收藏
页码:67 / 79
页数:13
相关论文
共 50 条
  • [1] Central extensions of free periodic groups
    Adian, S., I
    Atabekyan, V. S.
    SBORNIK MATHEMATICS, 2018, 209 (12) : 1677 - 1689
  • [2] Central Extensions of n-Torsion Groups
    Atabekyan, V. S.
    Gevorkyan, G. G.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2022, 57 (01): : 26 - 34
  • [3] Central extensions of current groups
    Peter Maier
    Karl-Hermann Neeb
    Mathematische Annalen, 2003, 326 : 367 - 415
  • [4] Central extensions of groups of sections
    Karl-Hermann Neeb
    Christoph Wockel
    Annals of Global Analysis and Geometry, 2009, 36 : 381 - 418
  • [5] CENTRAL EXTENSIONS OF PREORDERED GROUPS
    Gran, Marino
    Michel, Aline
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2023, 151 (04): : 659 - 686
  • [6] Central extensions of groups of sections
    Neeb, Karl-Hermann
    Wockel, Christoph
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 36 (04) : 381 - 418
  • [7] Universal central extensions of Lie groups
    Neeb, KH
    ACTA APPLICANDAE MATHEMATICAE, 2002, 73 (1-2) : 175 - 219
  • [8] Universal Central Extensions of Lie Groups
    Karl-Hermann Neeb
    Acta Applicandae Mathematica, 2002, 73 : 175 - 219
  • [9] Central Extensions of Coverings of Symplectomorphism Groups
    Vizman, Cornelia
    JOURNAL OF LIE THEORY, 2009, 19 (02) : 237 - 249
  • [10] Coadjoint Orbits of Central Extensions of Gauge Groups
    Jean-Luc Brylinski
    Communications in Mathematical Physics, 1997, 188 : 351 - 365