CRNet: Channel-Enhanced Remodeling-Based Network for Salient Object Detection in Optical Remote Sensing Images

被引:55
作者
Sun, Le [1 ]
Wang, Qing [2 ]
Chen, Yuwen [4 ]
Zheng, Yuhui [2 ,3 ]
Wu, Zebin [2 ]
Fu, Liyong [5 ]
Jeon, Byeungwoo [6 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Sch Comp Sci, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China
[3] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[4] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
[5] Chinese Acad Forestry, Inst Forest Resource Informat Tech, Beijing 100091, Peoples R China
[6] Sungkyunkwan Univ, Sch Elect & Elect Engn, Suwon 440746, South Korea
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Channel enhance module (CEM); optical remote sensing images (RSIS); redefined feature module (RFM); salient object detection (SOD); CONVOLUTIONAL NETWORKS; SEMANTIC SEGMENTATION; DESIGN;
D O I
10.1109/TGRS.2023.3305021
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Despite the remarkable progress made by the salient object detection of natural sensing images (NSI-SOD), the complex background and scale diversity issues of remote sensing images (RSIs) still pose a substantial obstacle. In this study, we build an end-to-end channel-enhanced remodeling-based network (CRNet) for optical RSIs (ORSIs) to highlight salient objects through feature augmentation. First, the backbone convolutional block is used to suggest the fundamental characteristics. Then, we use the channel enhance module (CEM) to enhance the shallow features. CEM primarily relies on the channel attention (CA) mechanism and uses a no-downscaling strategy to produce local cross-channel interaction, which lowers model complexity while enhancing extraction performance. Meanwhile, we use the redefined feature module (RFM) to reconstruct the deep features and generate global attention features by dimensional transformation and feature relationship aggregation to achieve the role of locating salient targets. Finally, the cascade combines the multiscale features to provide the final saliency map. To further enhance the representational power of the network, we use a hybrid loss function to improve performance. The proposed approach outperforms current state-of-the-art (SOTA) methods, as shown by several experiments on three available datasets. The source code of the proposed CRNet is available publicly at https://github.com/hilitteq/CRNet.git.
引用
收藏
页数:14
相关论文
共 59 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]  
Borji A., 2012, CVPR, P23
[3]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Cheng, Ming-Ming ;
Jiang, Huaizu ;
Li, Jia .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5706-5722
[4]   FusionNet: Edge Aware Deep Convolutional Networks for Semantic Segmentation of Remote Sensing Harbor Images [J].
Cheng, Dongcai ;
Meng, Gaofeng ;
Xiang, Shiming ;
Pan, Chunhong .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (12) :5769-5783
[5]   When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs [J].
Cheng, Gong ;
Yang, Ceyuan ;
Yao, Xiwen ;
Guo, Lei ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (05) :2811-2821
[6]   RRNet: Relational Reasoning Network With Parallel Multiscale Attention for Salient Object Detection in Optical Remote Sensing Images [J].
Cong, Runmin ;
Zhang, Yumo ;
Fang, Leyuan ;
Li, Jun ;
Zhao, Yao ;
Kwong, Sam .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[7]   Ship Detection in Optical Remote Sensing Images Based on Saliency and a Rotation-Invariant Descriptor [J].
Dong, Chao ;
Liu, Jinghong ;
Xu, Fang .
REMOTE SENSING, 2018, 10 (03)
[8]   Agricultural Land Abandonment and Retirement Mapping in the Northern China Crop-Pasture Band Using Temporal Consistency Check and Trajectory-Based Change Detection Approach [J].
Du, Zhenrong ;
Yang, Jianyu ;
Ou, Cong ;
Zhang, Tingting .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[9]   Structure-measure: A New Way to Evaluate Foreground Maps [J].
Fan, Deng-Ping ;
Cheng, Ming-Ming ;
Liu, Yun ;
Li, Tao ;
Borji, Ali .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4558-4567
[10]   Res2Net: A New Multi-Scale Backbone Architecture [J].
Gao, Shang-Hua ;
Cheng, Ming-Ming ;
Zhao, Kai ;
Zhang, Xin-Yu ;
Yang, Ming-Hsuan ;
Torr, Philip .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (02) :652-662