Advancements in hybrid approaches for brain tumor segmentation in MRI: a comprehensive review of machine learning and deep learning techniques

被引:0
|
作者
Sajjanar, Ravikumar [1 ,2 ]
Dixit, Umesh D. [1 ,2 ]
Vagga, Vittalkumar K. [3 ]
机构
[1] BLDEAs V P Dr P G Halakatti Coll Engn & Technol, Dept Elect & Commun Engn, Vijayapura 586103, Karnataka, India
[2] Visvesvaraya Technol Univ, Belagavi 590018, India
[3] Govt Polytech Koppal, Dept Elect & Commun Engn, Koppal 583231, Karnataka, India
基金
英国科研创新办公室;
关键词
Segmentation; Deep learning; Brain tumor; Magnetic resonance imaging; Machine learning; CONVOLUTIONAL NEURAL-NETWORKS; MODEL; ARCHITECTURE; CNN;
D O I
10.1007/s11042-023-16654-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Magnetic resonance imaging (MRI) brain tumour segmentation is essential for the diagnosis, planning, and follow-up of patients with brain tumours. In an effort to increase efficiency and accuracy, a number of machine learning and deep learning algorithms have been developed over time to automate the segmentation process. Hybrid strategies, which include the advantages of both machine learning and deep learning, have become more and more popular as viable options. This in-depth analysis covers the developments in hybrid techniques for MRI segmentation of brain tumours. The essential ideas of machine learning and deep learning approaches are then covered, with an emphasis on their individual advantages and disadvantages. After that, the review explores the numerous hybrid strategies put out in the literature. In hybrid approaches, various phases of the segmentation pipeline are combined with machine learning and deep learning techniques. Pre-processing, feature extraction, and post-processing are examples of these phases. The paper examines at various combinations of methods utilised at these phases, such as segmentation using deep learning models and feature extraction utilising conventional machine learning algorithms. The implementation of ensemble approaches, which integrate forecasts from various models to improve segmentation accuracy, is also explored. The research study also examines the properties of freely accessible brain tumour datasets, which are essential for developing and testing hybrid models. To address the difficulties of generalisation and robustness in brain tumour segmentation, it emphasises the necessity of vast, varied, and annotated datasets. Additionally, by contrasting them with conventional machine learning and deep learning techniques, the review analyses the effectiveness of hybrid approaches reported in the literature. This comprehensive research provides information on recent advancements in hybrid techniques for MRI segmenting brain tumours. It emphasises the potential for merging deep learning and machine learning methods to enhance the precision and effectiveness of brain tumour segmentation, ultimately assisting in improving patient diagnosis and treatment planning.
引用
收藏
页码:30505 / 30539
页数:35
相关论文
共 50 条
  • [21] Advancements in Deep Learning for B-Mode Ultrasound Segmentation: A Comprehensive Review
    Ansari, Mohammed Yusuf
    Mangalote, Iffa Afsa Changaai
    Meher, Pramod Kumar
    Aboumarzouk, Omar
    Al-Ansari, Abdulla
    Halabi, Osama
    Dakua, Sarada Prasad
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (03): : 2126 - 2149
  • [22] Cancer detection and segmentation using machine learning and deep learning techniques: a review
    Rai, Hari Mohan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27001 - 27035
  • [23] Cancer detection and segmentation using machine learning and deep learning techniques: a review
    Hari Mohan Rai
    Multimedia Tools and Applications, 2024, 83 : 27001 - 27035
  • [24] Review of Deep Learning Approaches for the Segmentation of Multiple Sclerosis Lesions on Brain MRI
    Zeng, Chenyi
    Gu, Lin
    Liu, Zhenzhong
    Zhao, Shen
    FRONTIERS IN NEUROINFORMATICS, 2020, 14
  • [25] Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review
    Painuli, Deepak
    Bhardwaj, Suyash
    Kose, Utku
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [26] A Comprehensive Survey on Brain Tumor Diagnosis Using Deep Learning and Emerging Hybrid Techniques with Multi-modal MR Image
    Ali, Saqib
    Li, Jianqiang
    Pei, Yan
    Khurram, Rooha
    Rehman, Khalil Ur
    Mahmood, Tariq
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2022, 29 (07) : 4871 - 4896
  • [27] Brain tumor Segmentation Approaches: Review, Analysis and Anticipated Solutions in Machine Learning
    Vidyarthi, Ankit
    Mittal, Namita
    PROCEEDINGS OF THE 2015 39TH NATIONAL SYSTEMS CONFERENCE (NSC), 2015,
  • [28] Advancements in Liver Tumor Detection: A Comprehensive Review of Various Deep Learning Models
    Hariharan, Shanmugasundaram
    Anandan, D.
    Krishnamoorthy, Murugaperumal
    Kukreja, Vinay
    Goyal, Nitin
    Chen, Shih-Yu
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2025, 142 (01): : 91 - 122
  • [29] A review of recent progress in deep learning-based methods for MRI brain tumor segmentation
    Chihati, Sarah
    Gaceb, Djamel
    2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 149 - 154
  • [30] The Significance of Machine Learning and Deep Learning Techniques in Cybersecurity: A Comprehensive Review
    Mijwil M.M.
    Salem I.E.
    Ismaeel M.M.
    Iraqi Journal for Computer Science and Mathematics, 2023, 4 (01): : 87 - 101