Machine Learning and BMI Improve the Prognostic Value of GAP Index in Treated IPF Patients

被引:5
作者
Lacedonia, Donato [1 ]
De Pace, Cosimo Carlo [1 ]
Rea, Gaetano [2 ]
Capitelli, Ludovica [3 ]
Gallo, Crescenzio [4 ]
Scioscia, Giulia [1 ]
Tondo, Pasquale [1 ]
Bocchino, Marialuisa [3 ]
机构
[1] Univ Foggia, Dept Med & Surg Sci, I-71121 Foggia, Italy
[2] Monaldi Hosp, AO Colli, Dept Radiol, I-80131 Naples, Italy
[3] Federico II Univ Naples, Dept Clin Med & Surg, Resp Med Unit, I-80131 Naples, Italy
[4] Univ Foggia, Dept Clin & Expt Med, I-71121 Foggia, Italy
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 02期
关键词
idiopathic pulmonary fibrosis; GAP index; machine learning; mortality; body mass index; nintedanib; pirfenidone;
D O I
10.3390/bioengineering10020251
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Patients affected by idiopathic pulmonary fibrosis (IPF) have a high mortality rate in the first 2-5 years from diagnosis. It is therefore necessary to identify a prognostic indicator that can guide the care process. The Gender-Age-Physiology (GAP) index and staging system is an easy-to-calculate prediction tool, widely validated, and largely used in clinical practice to estimate the risk of mortality of IPF patients at 1-3 years. In our study, we analyzed the GAP index through machine learning to assess any improvement in its predictive power in a large cohort of IPF patients treated either with pirfenidone or nintedanib. In addition, we evaluated this event through the integration of additional parameters. As previously reported by Y. Suzuki et al., our data show that inclusion of body mass index (BMI) is the best strategy to reinforce the GAP performance in IPF patients under treatment with currently available anti-fibrotic drugs.
引用
收藏
页数:9
相关论文
共 41 条
[1]   A relative entropy based feature selection framework for asset data in predictive maintenance [J].
Aremu, Oluseun Omotola ;
Cody, Roya Allison ;
Hyland-Wood, David ;
McAree, Peter Ross .
COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 145
[2]   Predictors and changes of physical activity in idiopathic pulmonary fibrosis [J].
Badenes-Bonet, Diana ;
Rodo-Pin, Anna ;
Castillo-Villegas, Diego ;
Vicens-Zygmunt, Vanesa ;
Bermudo, Guadalupe ;
Hernandez-Gonzalez, Fernanda ;
Portillo, Karina ;
Martinez-Llorens, Juana ;
Chalela, Roberto ;
Caguana, Oswaldo ;
Sellares, Jacobo ;
Molina-Molina, Maria ;
Duran, Xavier ;
Gea, Joaquim ;
Agustin Rodriguez-Chiaradia, Diego ;
Balcells, Eva .
BMC PULMONARY MEDICINE, 2022, 22 (01)
[3]   Comorbidities in idiopathic pulmonary fibrosis: an underestimated issue [J].
Caminati, Antonella ;
Lonati, Chiara ;
Cassandro, Roberto ;
Elia, Davide ;
Pelosi, Giuseppe ;
Torre, Olga ;
Zompatori, Maurizio ;
Uslenghi, Elisabetta ;
Harari, Sergio .
EUROPEAN RESPIRATORY REVIEW, 2019, 28 (153)
[4]   Derivation and validation of a simple multidimensional index incorporating exercise capacity parameters for survival prediction in idiopathic pulmonary fibrosis [J].
Chandel, Abhimanyu ;
Pastre, Jean ;
Valery, Solene ;
King, Christopher S. ;
Nathan, Steven D. .
THORAX, 2023, 78 (04) :368-375
[5]   An Overview of Correlation-Filter-Based Object Tracking [J].
Du, Shide ;
Wang, Shiping .
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2022, 9 (01) :18-31
[6]  
Duch W., P 2004 IEEE INT JOIN
[7]   Automated Analysis of Crackles in Patients with Interstitial Pulmonary Fibrosis [J].
Flietstra, B. ;
Markuzon, N. ;
Vyshedskiy, A. ;
Murphy, R. .
PULMONARY MEDICINE, 2011, 2011
[8]   A comprehensible machine learning tool to differentially diagnose idiopathic pulmonary fibrosis from other chronic interstitial lung diseases [J].
Furukawa, Taiki ;
Oyama, Shintaro ;
Yokota, Hideo ;
Kondoh, Yasuhiro ;
Kataoka, Kensuke ;
Johkoh, Takeshi ;
Fukuoka, Junya ;
Hashimoto, Naozumi ;
Sakamoto, Koji ;
Shiratori, Yoshimune ;
Hasegawa, Yoshinori .
RESPIROLOGY, 2022, 27 (09) :739-746
[9]   Idiopathic pulmonary fibrosis: Current and future treatment [J].
Glass, Daniel S. ;
Grossfeld, David ;
Renna, Heather A. ;
Agarwala, Priya ;
Spiegler, Peter ;
DeLeon, Joshua ;
Reiss, Allison B. .
CLINICAL RESPIRATORY JOURNAL, 2022, 16 (02) :84-96
[10]  
Gopika N, 2018, PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES 2018), P692, DOI 10.1109/CESYS.2018.8723980