Machine learning applied to MRI evaluation for the detection of lymph node metastasis in patients with locally advanced cervical cancer treated with neoadjuvant chemotherapy

被引:8
作者
Arezzo, Francesca [1 ]
Cormio, Gennaro [2 ,6 ]
Mongelli, Michele [3 ]
Cazzato, Gerardo [4 ]
Silvestris, Erica [1 ]
Kardhashi, Anila [1 ]
Cazzolla, Ambrogio [1 ]
Lombardi, Claudio [3 ]
Venerito, Vincenzo [5 ]
Loizzi, Vera [6 ]
机构
[1] IRCCS Ist Tumori Giovanni Paolo II, Gynecol Oncol Unit, Interdisciplinar Dept Med, Bari, Italy
[2] IRCCS Ist Tumori Giovanni Paolo II, Gynecol Oncol Unit, Bari, Italy
[3] Univ Bari Aldo Moro, Dept Biomed Sci & Human Oncol, Obstet & Gynecol Unit, Bari, Italy
[4] Univ Bari Aldo Moro, Dept Emergency & Organ Transplantat, Pathol Sect, Bari, Italy
[5] Univ Bari Aldo Moro, Dept Emergency & Organ Transplantat, Rheumatol Unit, Bari, Italy
[6] Univ Bari Aldo Moro, Interdisciplinar Dept Med, Obstet & Gynecol Unit, Bari, Italy
关键词
Cervical cancer; Machine leaning; Precision medicine; Lymph node assessment; Magnetic resonance imaging; ARTIFICIAL-INTELLIGENCE; RADICAL HYSTERECTOMY; RISK-FACTORS; CARCINOMA; METAANALYSIS; COMBINATION; TOMOGRAPHY; CISPLATIN; SURVIVAL; EFFICACY;
D O I
10.1007/s00404-022-06824-6
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Purpose Concurrent cisplatin-based chemotherapy and radiotherapy (CCRT) plus brachytherapy is the standard treatment for locally advanced cervical cancer (LACC). Platinum-based neoadjuvant chemotherapy (NACT) followed by radical hysterectomy is an alternative for patients with stage IB2-IIB disease. Therefore, the correct pre-treatment staging is essential to the proper management of this disease. Pelvic magnetic resonance imaging (MRI) is the gold standard examination but studies about MRI accuracy in the detection of lymph node metastasis (LNM) in LACC patients show conflicting data. Machine learning (ML) is emerging as a promising tool for unraveling complex non-linear relationships between patient attributes that cannot be solved by traditional statistical methods. Here we investigated whether ML might improve the accuracy of MRI in the detection of LNM in LACC patients. Methods We analyzed retrospectively LACC patients who underwent NACT and radical hysterectomy from 2015 to 2020. Demographic, clinical and MRI characteristics before and after NACT were collected, as well as information about post-surgery histopathology. Random features elimination wrapper was used to determine an attribute core set. A ML algorithm, namely Extreme Gradient Boosting (XGBoost) was trained and validated with tenfold cross-validation. The performances of the algorithm were assessed. Results Our analysis included n.92 patients. FIGO stage was IB2 in n.4/92 (4.3%), IB3 in n.42/92 (45%), IIA1 in n.1/92 (1.1%), IIA2 in n.16/92 (17.4%) and IIB in n.29/92 (31.5%). Despite detected neither at pre-treatment and post-treatment MRI in any patients, LNM occurred in n.16/92 (17%) patients. The attribute core set used to train ML algorithms included grading, histotypes, age, parity, largest diameter of lesion at either pre- and post-treatment MRI, presence/absence of fornix infiltration at pre-treatment MRI and FIGO stage. XGBoost showed a good performance (accuracy 89%, precision 83%, recall 78%, AUROC 0.79). Conclusions We developed an accurate model to predict LNM in LACC patients in NACT, based on a ML algorithm requiring few easy-to-collect attributes.
引用
收藏
页码:1911 / 1919
页数:9
相关论文
共 70 条
[1]  
Altukhova Olga, 2020, Procedia Computer Science, V176, P976, DOI 10.1016/j.procs.2020.09.093
[2]   Neoadjuvant chemotherapy plus radical surgery followed by chemotherapy in locally advanced cervical cancer [J].
Angloli, Roberto ;
Plotti, Francesco ;
Montera, Roberto ;
Aloisi, Alessia ;
Luvero, Daniela ;
Capriglione, Stella ;
Terranova, Corrado ;
Nardone, Carlo De Cicco ;
Muzii, Ludovico ;
Benedetti-Panici, Pierluigi .
GYNECOLOGIC ONCOLOGY, 2012, 127 (02) :290-296
[3]   A machine learning approach applied to gynecological ultrasound to predict progression-free survival in ovarian cancer patients [J].
Arezzo, Francesca ;
Cormio, Gennaro ;
La Forgia, Daniele ;
Santarsiero, Carla Mariaflavia ;
Mongelli, Michele ;
Lombardi, Claudio ;
Cazzato, Gerardo ;
Cicinelli, Ettore ;
Loizzi, Vera .
ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2022, 306 (06) :2143-2154
[4]   Radiomics Analysis in Ovarian Cancer: A Narrative Review [J].
Arezzo, Francesca ;
Loizzi, Vera ;
La Forgia, Daniele ;
Moschetta, Marco ;
Tagliafico, Alberto Stefano ;
Cataldo, Viviana ;
Kawosha, Adam Abdulwakil ;
Venerito, Vincenzo ;
Cazzato, Gerardo ;
Ingravallo, Giuseppe ;
Resta, Leonardo ;
Cicinelli, Ettore ;
Cormio, Gennaro .
APPLIED SCIENCES-BASEL, 2021, 11 (17)
[5]   Peritoneal Tuberculosis Mimicking Ovarian Cancer: Gynecologic Ultrasound Evaluation with Histopathological Confirmation [J].
Arezzo, Francesca ;
Cazzato, Gerardo ;
Loizzi, Vera ;
Ingravallo, Giuseppe ;
Resta, Leonardo ;
Cormio, Gennaro .
GASTROENTEROLOGY INSIGHTS, 2021, 12 (02) :278-282
[6]   HPV-Negative Cervical Cancer: A Narrative Review [J].
Arezzo, Francesca ;
Cormio, Gennaro ;
Loizzi, Vera ;
Cazzato, Gerardo ;
Cataldo, Viviana ;
Lombardi, Claudio ;
Ingravallo, Giuseppe ;
Resta, Leonardo ;
Cicinelli, Ettore .
DIAGNOSTICS, 2021, 11 (06)
[7]   A Machine Learning Tool to Predict the Response to Neoadjuvant Chemotherapy in Patients with Locally Advanced Cervical Cancer [J].
Arezzo, Francesca ;
La Forgia, Daniele ;
Venerito, Vincenzo ;
Moschetta, Marco ;
Tagliafico, Alberto Stefano ;
Lombardi, Claudio ;
Loizzi, Vera ;
Cicinelli, Ettore ;
Cormio, Gennaro .
APPLIED SCIENCES-BASEL, 2021, 11 (02) :1-10
[8]  
Baldini Chiara, 2018, Clin Exp Rheumatol, V36 Suppl 112, P137
[9]   Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology [J].
Balleyguier, Corinne ;
Sala, E. ;
Da Cunha, T. ;
Bergman, A. ;
Brkljacic, B. ;
Danza, F. ;
Forstner, R. ;
Hamm, B. ;
Kubik-Huch, R. ;
Lopez, C. ;
Manfredi, R. ;
McHugo, J. ;
Oleaga, L. ;
Togashi, K. ;
Kinkel, K. .
EUROPEAN RADIOLOGY, 2011, 21 (05) :1102-1110
[10]   Long-term survival following neoadjuvant chemotherapy and radical surgery in locally advanced cervical cancer [J].
Benedetti-Panici, P ;
Greggi, S ;
Scambia, G ;
Amoroso, M ;
Salerno, MG ;
Maneschi, F ;
Cutillo, G ;
Paratore, MP ;
Scorpiglione, N ;
Mancuso, S .
EUROPEAN JOURNAL OF CANCER, 1998, 34 (03) :341-346