Constructing Pt and Pt/MoC Co-Anchored on Nitrogen-Doped Carbon Toward Excellent Methanol-Resilient Oxygen Reduction Performance for Zinc-Air Batteries

被引:0
作者
Wang, Xuhong [1 ,2 ]
Gong, Xinyi [1 ,2 ]
Hu, Lulu [2 ]
Fan, Jicong [2 ]
Chen, Renhui [2 ]
Jia, Yuhang [2 ]
Cheng, Yafei [2 ]
Jiang, Binbin [3 ]
Geng, Hongbo [2 ]
机构
[1] Changzhou Univ, Sch Petrochem Engn, 21 Gehu Middle Rd, Changzhou 213164, Peoples R China
[2] Changshu Inst Technol, Sch Mat Engn, 99 Sanhuan Rd, Changshu 215500, Jiangsu, Peoples R China
[3] Sch Chem & Chem Engn, Anhui Key Lab Photoelect Magnet Funct Mat, Anqing 246011, Peoples R China
基金
中国国家自然科学基金;
关键词
Dual active sites; low-Pt catalysts; oxygen reduction reaction; synergistic effect; zinc-air battery; HYDROGEN EVOLUTION; BIFUNCTIONAL ELECTROCATALYSTS; MOLYBDENUM CARBIDE; TRANSITION-METAL; FUEL-CELLS; GRAPHENE; OXIDATION; CATALYSTS; NETWORKS; PLATINUM;
D O I
10.1002/cnma.202200365
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Drastically lowering the usage of platinum while enhancing activity and stability toward oxygen reduction is critical to promoting energy conversion efficiency in metal-air batteries. Herein, an efficient oxygen reduction catalyst was rationally designed by constructing ultrasmall Pt and Pt/MoC dual active sites co-anchored on nitrogen-doped carbon. Owing to the synergistic effect of the dual active sites, the optimized Pt-MoC@NC delivers superior oxygen reduction activity with ultralow Pt loading. Especially, the Pt-MoC@NC shows robust methanol tolerance. As the cathodic catalyst, Pt-MoC@NC based zinc-air battery possesses outstanding performance with a large peak power density of 100 mW cm(-2) and long charge-discharge durability.
引用
收藏
页数:6
相关论文
共 49 条
[1]   Atomic-Level Coupled Interfaces and Lattice Distortion on CuS/NiS2 Nanocrystals Boost Oxygen Catalysis for Flexible Zn-Air Batteries [J].
An, Li ;
Li, Yuxuan ;
Luo, Mingchuan ;
Yin, Jie ;
Zhao, Yong-Qing ;
Xu, Cailing ;
Cheng, Fangyi ;
Yang, Ying ;
Xi, Pinxian ;
Guo, Shaojun .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (42)
[2]  
[Anonymous], 2019, ANGEW CHEM, V131, P5413
[3]   Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction [J].
Bing, Yonghong ;
Liu, Hansan ;
Zhang, Lei ;
Ghosh, Dave ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (06) :2184-2202
[4]   Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces [J].
Chen, Chen ;
Kang, Yijin ;
Huo, Ziyang ;
Zhu, Zhongwei ;
Huang, Wenyu ;
Xin, Huolin L. ;
Snyder, Joshua D. ;
Li, Dongguo ;
Herron, Jeffrey A. ;
Mavrikakis, Manos ;
Chi, Miaofang ;
More, Karren L. ;
Li, Yadong ;
Markovic, Nenad M. ;
Somorjai, Gabor A. ;
Yang, Peidong ;
Stamenkovic, Vojislav R. .
SCIENCE, 2014, 343 (6177) :1339-1343
[5]  
Cheng Y, 2018, ADV MATER, V30, DOI [10.1002/adma.201870088, 10.1002/adma.201706287]
[6]  
Greeley J, 2009, NAT CHEM, V1, P552, DOI [10.1038/NCHEM.367, 10.1038/nchem.367]
[7]   Highly dispersed molybdenum carbide as non-noble electrocatalyst for PEM fuel cells: Performance for CO electrooxidation [J].
Guil-Lopez, R. ;
Martinez-Huerta, M. V. ;
Guillen-Villafuerte, O. ;
Pena, M. A. ;
Fierro, J. L. G. ;
Pastor, E. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (15) :7881-7888
[8]   Electrocatalytic performance of different Mo-phases obtained during the preparation of innovative Pt-MoC catalysts for DMFC anode [J].
Guillen-Villafuerte, O. ;
Guil-Lopez, R. ;
Nieto, E. ;
Garcia, G. ;
Rodriguez, J. L. ;
Pastor, E. ;
Fierro, J. L. G. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (08) :7171-7179
[9]   Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts [J].
Guo, Donghui ;
Shibuya, Riku ;
Akiba, Chisato ;
Saji, Shunsuke ;
Kondo, Takahiro ;
Nakamura, Junji .
SCIENCE, 2016, 351 (6271) :361-365
[10]   Atomically Dispersed Binary Co-Ni Sites in Nitrogen-Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution [J].
Han, Xiaopeng ;
Ling, Xiaofei ;
Yu, Deshuang ;
Xie, Dengyu ;
Li, Linlin ;
Peng, Shengjie ;
Zhong, Cheng ;
Zhao, Naiqin ;
Deng, Yida ;
Hu, Wenbin .
ADVANCED MATERIALS, 2019, 31 (49)