Electrochemical Synthesis of a WO3/MoSx Heterostructured Bifunctional Catalyst for Efficient Overall Water Splitting

被引:5
|
作者
Levinas, Ramunas [1 ,2 ]
Tsyntsaru, Natalia [1 ,3 ]
Cesiulis, Henrikas [1 ]
Viter, Roman [4 ,5 ]
Grundsteins, Karlis [4 ]
Tamasauskaite-Tamasiunaite, Loreta [2 ]
Norkus, Eugenijus [2 ]
机构
[1] Vilnius Univ, Fac Chem & Geosci, LT-03225 Vilnius, Lithuania
[2] Ctr Phys Sci & Technol FTMC, State Res Inst, LT-10257 Vilnius, Lithuania
[3] Moldova State Univ, Inst Appl Phys, Kishinev 2028, Moldova
[4] Univ Latvia, Inst Atom Phys & Spect, LV-1586 Riga, Latvia
[5] Sumy State Univ, Ctr Collect Use Sci Equipment, UA-40018 Sumy, Ukraine
关键词
plasma electrolytic oxidation; tungsten oxide; molybdenum sulfide; heterostructure; water splitting; electrocatalysis; hydrogen evolution reaction; photoanode; scanning electrochemical microscopy; HYDROGEN EVOLUTION REACTION; PLASMA ELECTROLYTIC OXIDATION; ELECTRODEPOSITION; FILMS; MECHANISM; MOS2;
D O I
10.3390/coatings13040673
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photo-/electrochemical water splitting can be a suitable method to produce "green" hydrogen and oxygen by utilizing renewable energy or even direct sunlight. In order to carry out photoelectrochemical (PEC) water splitting, a photoanode based on transition metal oxides, which absorbs photons and produces photoexcited electron-hole pairs, is needed. The positively charged holes can then participate in the water oxidation reaction. Meanwhile, a cathodic hydrogen evolution reaction (HER) can occur more efficiently with electrocatalytic materials that enhance the adsorption of H+, such as MoS2. In this study, it was shown that WO3/MoSx heterostructured materials can be synthesized by an electrochemical method called plasma electrolytic oxidation (PEO). During this process, many micro-breakdowns of the oxide layer occur, causing ionization of the oxide and electrolyte. The ionized mixture then cools and solidifies, resulting in crystalline WO3 with incorporated MoSx. The surface and cross-sectional morphology were characterized by SEM-FIB, and the coatings could reach up to 3.48 mu m thickness. Inclusion of MoSx was confirmed by EDX as well as XPS. Synthesis conditions were found to have an influence on the band gap, with the lowest value being 2.38 eV. Scanning electrochemical microscopy was used to map the local HER activity and correlate the activity hotspots to MoSx's content and surface topography. The bifunctional catalyst based on a WO3/MoSx heterostructure was evaluated for PEC and HER water-splitting activities. As a photoanode, it could reach up to 6% photon conversion efficiency. For HER in acidic media, a Tafel slope of 42.6 mV center dot dec(-1) can be reached.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Robust Nonprecious CuFe Composite as a Highly Efficient Bifunctional Catalyst for Overall Electrochemical Water Splitting
    Inamdar, Akbar I.
    Chavan, Harish S.
    Hou, Bo
    Lee, Chi Ho
    Lee, Sang Uck
    Cha, SeungNam
    Kim, Hyungsang
    Im, Hyunsik
    SMALL, 2020, 16 (02)
  • [2] Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting
    Zhang, Haojie
    Maijenburg, A. Wouter
    Li, Xiaopeng
    Schweizer, Stefan L.
    Wehrspohn, Ralf B.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (34)
  • [3] One-step synthesis of heterostructured cobalt-iron selenide as bifunctional catalyst for overall water splitting
    Boakye, Felix Ofori
    Li, Yong
    Owusu, Kwadwo Asare
    Amiinu, Ibrahim Saana
    Cheng, Yapeng
    Zhang, Haining
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 275
  • [4] Rational design of bifunctional hydroxide/sulfide heterostructured catalyst for efficient electrochemical seawater splitting
    Yang, Yang
    Lin, Meihong
    Wu, Yue
    Chen, Ruotong
    Guo, Donggang
    Liu, Lu
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 647 : 510 - 518
  • [5] Synthesis and characterization of WO3 photoanodes for efficient photoelectrochemical water splitting
    Zheng, Guangwei
    Jiang, Shukang
    Zhang, Fengqing
    Yu, Hongwen
    Zhang, Yanli L.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2025, 131 (01):
  • [6] Cobalt Phosphide Nanowire Arrays on Conductive Substrate as an Efficient Bifunctional Catalyst for Overall Water Splitting
    Qiu, Binglin
    Han, Ali
    Jiang, Daochuan
    Wang, Taotao
    Du, Pingwu
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (02) : 2360 - 2369
  • [7] Performance and Mechanism of Photoelectrocatalytic Activity of MoSx/WO3 Heterostructures Obtained by Reactive Pulsed Laser Deposition for Water Splitting
    Fominski, Vyacheslav
    Romanov, Roman
    Fominski, Dmitry
    Soloviev, Alexey
    Rubinkovskaya, Oxana
    Demin, Maxim
    Maksimova, Ksenia
    Shvets, Pavel
    Goikhman, Aleksandr
    NANOMATERIALS, 2020, 10 (05)
  • [8] Amorphous NiFe Nanotube Arrays Bifunctional Electrocatalysts for Efficient Electrochemical Overall Water Splitting
    Xu, Lu
    Zhang, Fu-Tao
    Chen, Jia-Hui
    Fu, Xian-Zhu
    Sun, Rong
    Wong, Ching-Ping
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (03): : 1210 - 1217
  • [9] Mutually beneficial Co3O4@MoS2 heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting
    Liu, Jia
    Wang, Jinsong
    Zhang, Bao
    Ruan, Yunjun
    Wan, Houzhao
    Ji, Xiao
    Xu, Kui
    Zha, Dace
    Miao, Ling
    Jiang, Jianjun
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (05) : 2067 - 2072
  • [10] Synthesis of CuMoS micro-rods material as efficient bifunctional electrocatalyst for overall water splitting
    Kalusulingam, Rajathsing
    Selvam, Mathi
    Mikhailova, T. S.
    Popov, Y. V.
    Khubezhov, S. A.
    Pankov, I. V.
    Myasoedova, Tatiana N.
    CHEMISTRYSELECT, 2023, 8 (29):