DISCRETE ENERGY ANALYSIS OF THE THIRD-ORDER VARIABLE-STEP BDF TIME-STEPPING FOR DIFFUSION EQUATIONS

被引:10
作者
Liao, Hong-lin [1 ,2 ]
Tang, Tao [3 ]
Zhou, Tao [4 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Peoples R China
[2] MIIT, Key Lab Math Modelling & High Performance Comp Air, Nanjing 211106, Peoples R China
[3] BNU HKBU United Int Coll, Div Sci & Technol, Zhuhai 519087, Peoples R China
[4] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2023年 / 41卷 / 02期
关键词
Diffusion equations; Variable-step third-order BDF scheme; Discrete gradient structure; Discrete orthogonal convolution kernels; Stability and convergence; LINEAR MULTISTEP METHODS; STABILITY; SCHEME;
D O I
10.4208/jcm.2207-m2022-0020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is one of our series works on discrete energy analysis of the variable-step BDF schemes. In this part, we present stability and convergence analysis of the third-order BDF (BDF3) schemes with variable steps for linear diffusion equations, see, e.g., [SIAM J. Numer. Anal., 58:2294-2314] and [Math. Comp., 90: 1207-1226] for our previous works on the BDF2 scheme. To this aim, we first build up a discrete gradient structure of the variable-step BDF3 formula under the condition that the adjacent step ratios are less than 1.4877, by which we can establish a discrete energy dissipation law. Mesh-robust stability and convergence analysis in the L2 norm are then obtained. Here the mesh robustness means that the solution errors are well controlled by the maximum time-step size but independent of the adjacent time-step ratios. We also present numerical tests to support our theoretical results.
引用
收藏
页码:325 / 344
页数:20
相关论文
共 19 条
[1]   IMPLICIT-EXPLICIT MULTISTEP METHODS FOR HYPERBOLIC SYSTEMS WITH MULTISCALE RELAXATION [J].
Albi, Giacomo ;
Dimarco, Giacomo ;
Pareschi, Lorenzo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (04) :A2402-A2435
[2]   Time discretisation of parabolic problems with the variable 3-step BDF [J].
Calvo, M ;
Grigorieff, RD .
BIT, 2002, 42 (04) :689-701
[3]   ON THE ZERO STABILITY OF THE VARIABLE ORDER VARIABLE STEPSIZE BDF-FORMULAS [J].
CALVO, M ;
GRANDE, T ;
GRIGORIEFF, RD .
NUMERISCHE MATHEMATIK, 1990, 57 (01) :39-50
[4]   A SECOND ORDER BDF NUMERICAL SCHEME WITH VARIABLE STEPS FOR THE CAHN-HILLIARD EQUATION [J].
Chen, Wenbin ;
Wang, Xiaoming ;
Yan, Yue ;
Zhang, Zhuying .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) :495-525
[5]   A VARIABLE STEPSIZE, VARIABLE ORDER FAMILY OF LOW COMPLEXITY [J].
DeCaria, Victor ;
Guzel, Ahmet ;
Layton, William ;
Li, Yi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (03) :A2130-A2160
[6]   IMPLICIT-EXPLICIT LINEAR MULTISTEP METHODS FOR STIFF KINETIC EQUATIONS [J].
Dimarco, Giacomo ;
Pareschi, Lorenzo .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :664-690
[7]  
Hairer E., SPRINGER SERIES COMP, V8, p20 0 0
[8]   Energy Stability of BDF Methods up to Fifth-Order for the Molecular Beam Epitaxial Model Without Slope Selection [J].
Kang, Yuanyuan ;
Liao, Hong-lin .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (02)
[9]   STABILITY OF VARIABLE-STEP BDF2 AND BDF3 METHODS [J].
LI, Zhaoyi ;
Liao, Hong-Lin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (04) :2253-2272
[10]   Mesh-Robustness of an Energy Stable BDF2 Scheme with Variable Steps for the Cahn-Hilliard Model [J].
Liao, Hong-lin ;
Ji, Bingquan ;
Wang, Lin ;
Zhang, Zhimin .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (02)