Towards artificial intelligence in mental health: a comprehensive survey on the detection of schizophrenia

被引:19
作者
Tyagi, Ashima [1 ]
Singh, Vibhav Prakash [1 ]
Gore, Manoj Madhava [1 ]
机构
[1] Motilal Nehru Natl Inst Technol Allahabad, Dept Comp Sci & Engn, Prayagraj, India
关键词
Schizophrenia; Neuroimaging; EEG; MRI; Machine learning; Deep learning; ADOLESCENT-ONSET SCHIZOPHRENIA; RESONANCE-IMAGING DATA; RANGE FUNCTIONAL CONNECTIVITY; COMPUTER-AIDED DIAGNOSIS; RESTING-STATE FMRI; 1ST-EPISODE SCHIZOPHRENIA; REGIONAL HOMOGENEITY; NEURAL-NETWORKS; WORKING-MEMORY; STRUCTURAL MRI;
D O I
10.1007/s11042-022-13809-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Computer Aided Diagnosis systems assist radiologists and doctors in the early diagnosis of mental disorders such as Alzheimer's, bipolar disorder, depression, autism, dementia, and schizophrenia using neuroimaging. Advancements in Artificial Intelligence (AI) have leveraged neuroimaging research to unfold numerous techniques for analyzing and interpreting thousands of scans in order to detect and classify various mental illnesses. Schizophrenia is a long-standing psychiatric disorder affecting millions of people worldwide. It causes hallucinations, delusions, and defacement in thinking, behavior, and cognition. Machine Learning and Deep Learning are the subsets of AI which are used for the detection and diagnosis of schizophrenia by gathering insights from different types of modalities. This paper work examines several methods of AI used for the automated diagnosis of schizophrenia using three primary modalities- EEG, structural MRI, and functional MRI. This paper explores different datasets available for schizophrenia along with the techniques and software used to pre-process the EEG and MR images. Further this paper focuses on the different feature extraction and selection techniques to retrieve an appropriate set of features along with the brief overview of machine learning & deep learning approaches. We have also reviewed numerous studies on the prognosis of schizophrenia and presented an exhaustive analysis of the machine learning and deep learning techniques used across EEG and MRI.
引用
收藏
页码:20343 / 20405
页数:63
相关论文
共 204 条
[41]  
de Pierrefeu A., 2018, 2018 INT WORKSH PATT, P1
[42]  
Delude CM, 2009, ALT BRAIN ACT SCHIZ
[43]  
Dontaraju K, 2018, CONF REC ASILOMAR C, P1351, DOI 10.1109/ACSSC.2018.8645300
[44]   Brain Subtyping Enhances The Neuroanatomical Discrimination of Schizophrenia [J].
Dwyer, Dominic B. ;
Cabral, Carlos ;
Kambeitz-Ilankovic, Lana ;
Sanfelici, Rachele ;
Kambeitz, Joseph ;
Calhoun, Vince ;
Falkai, Peter ;
Pantelis, Christos ;
Meisenzahl, Eva ;
Koutsouleris, Nikolaos .
SCHIZOPHRENIA BULLETIN, 2018, 44 (05) :1060-1069
[45]  
Elakkiya M.K., 2022, Cognitive Systems and Signal Processing in Image Processing, P293, DOI DOI 10.1016/B978-0-12-824410-4.00004-0
[46]   Lempel-Ziv complexity in schizophrenia: A MEG study [J].
Fernandez, Alberto ;
Lopez-Ibor, Maria-Ines ;
Turrero, Agustin ;
Santos, Juan-Matias ;
Moron, Maria-Dolores ;
Hornero, Roberto ;
Gomez, Carlos ;
Andreina Mendez, Maria ;
Ortiz, Tomas ;
Jose Lopez-Ibor, Juan .
CLINICAL NEUROPHYSIOLOGY, 2011, 122 (11) :2227-2235
[47]   Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex [J].
Gaser, C ;
Nenadic, I ;
Buchsbaum, BR ;
Hazlett, EA ;
Buchsbaum, MS .
AMERICAN JOURNAL OF PSYCHIATRY, 2004, 161 (01) :154-156
[48]   Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features [J].
Georgiadis, Pantelis ;
Cavouras, Dionisis ;
Kalatzis, Ioannis ;
Daskalakis, Antonis ;
Kagadis, George C. ;
Sifaki, Koralia ;
Malamas, Menelaos ;
Nikiforidis, George ;
Solomou, Ekaterini .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2008, 89 (01) :24-32
[49]   The MCIC Collection: A Shared Repository of Multi-Modal, Multi-Site Brain Image Data from a Clinical Investigation of Schizophrenia [J].
Gollub, Randy L. ;
Shoemaker, Jody M. ;
King, Margaret D. ;
White, Tonya ;
Ehrlich, Stefan ;
Sponheim, Scott R. ;
Clark, Vincent P. ;
Turner, Jessica A. ;
Mueller, Bryon A. ;
Magnotta, Vince ;
O'Leary, Daniel ;
Ho, Beng C. ;
Brauns, Stefan ;
Manoach, Dara S. ;
Seidman, Larry ;
Bustillo, Juan R. ;
Lauriello, John ;
Bockholt, Jeremy ;
Lim, Kelvin O. ;
Rosen, Bruce R. ;
Schulz, S. Charles ;
Calhoun, Vince D. ;
Andreasen, Nancy C. .
NEUROINFORMATICS, 2013, 11 (03) :367-388
[50]   Predicting response to electroconvulsive therapy combined with antipsychotics in schizophrenia using multi-parametric magnetic resonance imaging [J].
Gong, Jie ;
Cui, Long-Biao ;
Xi, Yi-Bin ;
Zhao, Ying-Song ;
Yang, Xue-Juan ;
Xu, Zi-liang ;
Sun, Jin-Bo ;
Liu, Peng ;
Jia, Jie ;
Li, Ping ;
Yin, Hong ;
Qin, Wei .
SCHIZOPHRENIA RESEARCH, 2020, 216 :262-271