Optimization of spodumene identification by statistical approach for laser-induced breakdown spectroscopy data of lithium pegmatite ores

被引:12
作者
Romppanen, Sari [1 ]
Polonen, Ilkka [2 ]
Hakkanen, Heikki [3 ]
Kaski, Saara [1 ]
机构
[1] Univ Jyvaskyla, Dept Chem, POB 35, FI-40014 Jyvaskyla, Finland
[2] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla, Finland
[3] Univ Jyvaskyla, Dept Biol & Environm Sci, Jyvaskyla, Finland
关键词
Lithium pegmatite ore; LIBS; VCA; K-means; DBSCAN; PARTIAL LEAST-SQUARES; RAPID ANALYSIS; LIBS; MINERALS; DISCRIMINATION; SAMPLES; ROCKS;
D O I
10.1080/05704928.2021.1963977
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Mapping with laser-induced breakdown spectroscopy (LIBS) can offer more than just the spatial distribution of elements: the rich spectral information also enables mineral recognition. In the present study, statistical approaches were used for the recognition of the spodumene from lithium pegmatite ores. A broad spectral range (280-820 nm) with multiple lines was first used to establish the methods based on vertex component analysis (VCA) and K-means and DBSCAN clusterings. However, with a view to potential on-site applications, the dimensions of the datasets must be reduced in order to accomplish fast analysis. Therefore, the capability of the methods in mineral identification was tested with a limited spectral range (560-815 nm) using Li-pegmatites with various mineralogical characters.
引用
收藏
页码:297 / 317
页数:21
相关论文
共 56 条
[1]  
Ahtola T., 2015, OVERVIEW LITHIUM PEG
[2]  
Al-Ani T., 2008, MINERALOGY SPODUMENE
[3]   Laser-induced breakdown spectroscopy-based geochemical fingerprinting for the rapid analysis and discrimination of minerals: the example of garnet [J].
Alvey, Daniel C. ;
Morton, Kenneth ;
Harmon, Russell S. ;
Gottfried, Jennifer L. ;
Remus, Jeremiah J. ;
Collins, Leslie M. ;
Wise, Michael A. .
APPLIED OPTICS, 2010, 49 (13) :C168-C180
[4]   Clustering and training set selection methods for improving the accuracy of quantitative laser induced breakdown spectroscopy [J].
Anderson, Ryan B. ;
Bell, James F., III ;
Wiens, Roger C. ;
Morris, Richard V. ;
Clegg, Samuel M. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2012, 70 :24-32
[5]   Current trends in laser-induced breakdown spectroscopy: a tutorial review [J].
Andrade, Daniel Fernandes ;
Pereira-Filho, Edenir Rodrigues ;
Amarasiriwardena, Dulasiri .
APPLIED SPECTROSCOPY REVIEWS, 2021, 56 (02) :98-114
[6]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[7]  
Boardman J. W., 1995, P 5 ANN JPL AIRB EAR, V1, P23
[8]  
Butcher A, 2010, AIMM SPECTR SER, P83
[9]   Convolutional neural network as a novel classification approach for laser-induced breakdown spectroscopy applications in lithological recognition [J].
Chen, Junxi ;
Pisonero, Jorge ;
Chen, Sha ;
Wang, Xu ;
Fan, Qingwen ;
Duan, Yixiang .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2020, 166
[10]   Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques [J].
Clegg, Samuel M. ;
Sklute, Elizabeth ;
Dyar, M. Darby ;
Barefield, James E. ;
Wiens, Roger C. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2009, 64 (01) :79-88