Approximation by Bernstein-Kantorovich type operators based on Beta function

被引:1
作者
Aharouch, Lahsen [1 ,2 ]
Ansari, Khursheed J. [1 ]
机构
[1] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
[2] Polydisciplinary Fac Ouarzazate, POB 638, Ouarzazate, Morocco
关键词
Bernstein operators; Beta function; Modulus of continuity; Voronovskaya type theorem; CONSTRUCTION;
D O I
10.2298/FIL2330445A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With the idea taken from the King type operators which preserve some test functions, we introduce here some Durrmeyer variants of Bernstein operators based on Beta functions. Some direct ap-proximation theorems are provided of this introduced sequence of operators. We also proved Voronovkaja type theorem. Furthermore, graphical and numerical examples are also given with the help of MATLAB.
引用
收藏
页码:10445 / 10457
页数:13
相关论文
共 25 条
[21]   Approximation properties and error estimation of q-Bernstein shifted operators [J].
Mursaleen, Mohammad ;
Ansari, Khursheed J. ;
Khan, Asif .
NUMERICAL ALGORITHMS, 2020, 84 (01) :207-227
[22]   Statistical Convergence via q-Calculus and a Korovkin's Type Approximation Theorem [J].
Mursaleen, Mohammad Ayman ;
Serra-Capizzano, Stefano .
AXIOMS, 2022, 11 (02)
[23]   Smoothness Properties of Modified Bernstein-Kantorovich Operators [J].
Ozarslan, Mehmet Ali ;
Duman, Oktay .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (01) :92-105
[24]   Approximation properties of a new family of Gamma operators and their applications [J].
Ozcelik, Reyhan ;
Kara, Emrah Evren ;
Usta, Fuat ;
Ansari, Khursheed J. .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[25]  
Peetre J., 1968, Noteas de Mathematica, V39