Challenges of Gene Editing Therapies for Genodermatoses

被引:10
作者
Brooks, Imogen R. [1 ]
Sheriff, Adam [1 ]
Moran, Declan [1 ]
Wang, Jingbo [1 ]
Jackow, Joanna [1 ]
机构
[1] Kings Coll London, St Johns Inst Dermatol, London SE1 9RT, England
基金
英国惠康基金;
关键词
genodermatoses; gene editing; CRISPR; base editing; prime editing; gene editing strategies; off-targets; genetic skin disease; DYSTROPHIC EPIDERMOLYSIS-BULLOSA; FIBROBLAST CELL THERAPY; OFF-TARGET; MOUSE MODEL; STEM-CELLS; SILICON NANONEEDLES; SIRNA DELIVERY; CRISPR CAS9; GENOMIC DNA; IN-VITRO;
D O I
10.3390/ijms24032298
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genodermatoses encompass a wide range of inherited skin diseases, many of which are monogenic. Genodermatoses range in severity and result in early-onset cancers or life-threatening damage to the skin, and there are few curative options. As such, there is a clinical need for single-intervention treatments with curative potential. Here, we discuss the nascent field of gene editing for the treatment of genodermatoses, exploring CRISPR-Cas9 and homology-directed repair, base editing, and prime editing tools for correcting pathogenic mutations. We specifically focus on the optimisation of editing efficiency, the minimisation off-targets edits, and the tools for delivery for potential future therapies. Honing each of these factors is essential for translating gene editing therapies into the clinical setting. Therefore, the aim of this review article is to raise important considerations for investigators aiming to develop gene editing approaches for genodermatoses.
引用
收藏
页数:22
相关论文
共 157 条
[1]   A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action [J].
Abadi, Shiran ;
Yan, Winston X. ;
Amar, David ;
Mayrose, Itay .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (10)
[2]   Silencing of transgene expression in mammalian cells by DNA methylation and histone modifications in gene therapy perspective [J].
Alhaji, Suleiman Yusuf ;
Ngai, Siew Ching ;
Abdullah, Syahril .
BIOTECHNOLOGY AND GENETIC ENGINEERING REVIEWS, VOL 35, 2019, 35 :1-25
[3]   Concise Review: Mesenchymal Stem Cells: From Roots to Boost [J].
Andrzejewska, Anna ;
Lukomska, Barbara ;
Janowski, Miroslaw .
STEM CELLS, 2019, 37 (07) :855-864
[4]   Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors [J].
Anzalone, Andrew V. ;
Koblan, Luke W. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2020, 38 (07) :824-844
[5]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[6]   Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning [J].
Arbab, Mandana ;
Shen, Max W. ;
Mok, Beverly ;
Wilson, Christopher ;
Matuszek, Zaneta ;
Cassa, Christopher A. ;
Liu, David R. .
CELL, 2020, 182 (02) :463-+
[7]   Off-Target Analysis in Gene Editing and Applications for Clinical Translation of CRISPR/Cas9 in HIV-1 Therapy [J].
Atkins, Andrew ;
Chung, Cheng-Han ;
Allen, Alexander G. G. ;
Dampier, Will ;
Gurrola, Theodore E. E. ;
Sariyer, Ilker K. K. ;
Nonnemacher, Michael R. R. ;
Wigdahl, Brian .
FRONTIERS IN GENOME EDITING, 2021, 3
[8]  
Baker Catherine, 2020, F1000Res, V9, P281, DOI 10.12688/f1000research.23185.2
[9]   The Good and the Bad of Cell Membrane Electroporation [J].
Balantic, Katja ;
Miklavcic, Damijan ;
Krizaj, Igor ;
Kramar, Peter .
ACTA CHIMICA SLOVENICA, 2021, 68 (04) :753-764
[10]   Tools for experimental and computational analyses of off-target editing by programmable nucleases [J].
Bao, X. Robert ;
Pan, Yidan ;
Lee, Ciaran M. ;
Davis, Timothy H. ;
Bao, Gang .
NATURE PROTOCOLS, 2021, 16 (01) :10-26