Generalized uncertainty principles for offset quaternion linear canonical transform

被引:4
作者
Bahri, Mawardi [1 ]
机构
[1] Hasanuddin Univ, Dept Math, Makassar 90245, Indonesia
关键词
Quaternion linear canonical transform; Offset quaternion linear canonical transform; Generalized uncertainty principles;
D O I
10.1007/s41478-024-00733-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we begin by providing a new proof of the uncertainty principle related to the quaternion linear canonical transform. We then generalize the uncertainty principles for the quaternion linear canonical transform in the literature. After defining the offset quaternion linear canonical transform and making a direct connection between the quaternion linear canonical transform and the offset quaternion linear canonical transform, we finally transfer the uncertainty principles for the quaternion linear canonical transform to the offset quaternion linear canonical transform.
引用
收藏
页码:2525 / 2538
页数:14
相关论文
共 24 条
[1]   Donoho-Stark's uncertainty principle for the quaternion Fourier transform [J].
Abouelaz, A. ;
Achak, A. ;
Daher, R. ;
Safouane, N. .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02) :587-597
[2]   Uncertainty Principles for The Quaternion Linear Canonical Transform [J].
Achak, A. ;
Abouelaz, A. ;
Daher, R. ;
Safouane, N. .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (05)
[3]  
Ashino, 2016, ABSTR APPL ANAL, V2016, P1, DOI DOI 10.1155/2016/5874930
[4]   Uncertainty principles and applications of quaternion windowed linear canonical transform [J].
Prasad A. ;
Kundu M. .
Optik, 2023, 272
[5]   Quaternion offset linear canonical transform in one-dimensional setting [J].
Bhat, M. Younus ;
Dar, Aamir H. .
JOURNAL OF ANALYSIS, 2023, 31 (04) :2613-2622
[6]   The algebra of 2D Gabor quaternionic offset linear canonical transform and uncertainty principles The algebra of 2D Gabor quaternionic offset LCT and uncertainty principles [J].
Bhat, M. Younus ;
Dar, Aamir H. .
JOURNAL OF ANALYSIS, 2022, 30 (02) :637-649
[7]   The two-sided short-time quaternionic offset linear canonical transform and associated convolution and correlation [J].
Bhat, Mohammad Younus ;
Dar, Aamir Hamid .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) :8478-8495
[8]  
Bracewell Ronald, 2000, FOURIER TRANSFORM IT
[9]  
Bulow T., 1999, Hypercomplex spectral signal representations for the processing and analysis of images
[10]   Pitt's inequality and the uncertainty principle associated with the quaternion Fourier transform [J].
Chen, Li-Ping ;
Kou, Kit Ian ;
Liu, Ming-Sheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) :681-700