Explainable machine learning models with privacy

被引:3
|
作者
Bozorgpanah, Aso [1 ]
Torra, Vicenc [1 ]
机构
[1] Umea Univ, Dept Comp Sci, MIT Bldg, S-90187 Umea, Sweden
关键词
Machine learning; Data privacy; Microaggregation; k-anonymity; Noise addition; Local differential privacy; Irregularity; Explainability; eXplainable artificial intelligence; K-ANONYMOUS MICROAGGREGATION;
D O I
10.1007/s13748-024-00315-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The importance of explainable machine learning models is increasing because users want to understand the reasons behind decisions in data-driven models. Interpretability and explainability emerge from this need to design comprehensible systems. This paper focuses on privacy-preserving explainable machine learning. We study two data masking techniques: maximum distance to average vector (MDAV) and additive noise. The former is for achieving k-anonymity, and the second uses Laplacian noise to avoid record leakage and provide a level of differential privacy. We are interested in the process of developing data-driven models that, at the same time, make explainable decisions and are privacy-preserving. That is, we want to avoid the decision-making process leading to disclosure. To that end, we propose building models from anonymized data. More particularly, data that are k-anonymous or that have been anonymized add an appropriate level of noise to satisfy some differential privacy requirements. In this paper, we study how explainability has been affected by these data protection procedures. We use TreeSHAP as our technique for explainability. The experiments show that we can keep up to a certain degree both accuracy and explainability. So, our results show that some trade-off between privacy and explainability is possible for data protection using k-anonymity and noise addition.
引用
收藏
页码:31 / 50
页数:20
相关论文
共 50 条
  • [1] Explainable machine learning models with privacy
    Aso Bozorgpanah
    Vicenç Torra
    Progress in Artificial Intelligence, 2024, 13 : 31 - 50
  • [2] Explainable Machine Learning for Default Privacy Setting Prediction
    Lobner, Sascha
    Tesfay, Welderufael B.
    Nakamura, Toru
    Pape, Sebastian
    IEEE ACCESS, 2021, 9 : 63700 - 63717
  • [3] Evaluating Explainable Machine Learning Models for Clinicians
    Scarpato, Noemi
    Nourbakhsh, Aria
    Ferroni, Patrizia
    Riondino, Silvia
    Roselli, Mario
    Fallucchi, Francesca
    Barbanti, Piero
    Guadagni, Fiorella
    Zanzotto, Fabio Massimo
    COGNITIVE COMPUTATION, 2024, 16 (04) : 1436 - 1446
  • [4] Explainable inflation forecasts by machine learning models
    Aras, Serkan
    Lisboa, Paulo J. G.
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 207
  • [5] Explainable Machine Learning for Lung Cancer Screening Models
    Kobylinska, Katarzyna
    Orlowski, Tadeusz
    Adamek, Mariusz
    Biecek, Przemyslaw
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [6] Editorial: Interpretable and explainable machine learning models in oncology
    Hrinivich, William Thomas
    Wang, Tonghe
    Wang, Chunhao
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [7] Explainable Machine Learning Models Assessing Lending Risk
    Nassiri, Khalid
    Akhloufi, Moulay A.
    NAVIGATING THE TECHNOLOGICAL TIDE: THE EVOLUTION AND CHALLENGES OF BUSINESS MODEL INNOVATION, VOL 3, ICBT 2024, 2024, 1082 : 519 - 529
  • [8] Explainable machine learning models to analyse maternal health
    Patel, Shivshanker Singh
    DATA & KNOWLEDGE ENGINEERING, 2023, 146
  • [9] Explainable machine learning models for Medicare fraud detection
    John T. Hancock
    Richard A. Bauder
    Huanjing Wang
    Taghi M. Khoshgoftaar
    Journal of Big Data, 10
  • [10] An ensemble framework for explainable geospatial machine learning models
    Liu, Lingbo
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 132