Enhancing Interface Connectivity for Multifunctional Magnetic Carbon Aerogels: An In Situ Growth Strategy of Metal-Organic Frameworks on Cellulose Nanofibrils

被引:82
作者
Qiao, Jing [1 ,2 ]
Song, Qinghua [2 ]
Zhang, Xue [1 ]
Zhao, Shanyu [3 ]
Liu, Jiurong [1 ]
Nystrom, Gustav [4 ,5 ]
Zeng, Zhihui [1 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China
[2] Shandong Univ, Sch Mech Engn, Jinan 250061, Peoples R China
[3] Swiss Fed Labs Mat Sci & Technol Empa, Lab Bldg Energy Mat & Components, CH-8600 Dubendorf, Switzerland
[4] Swiss Fed Labs Mat Sci & Technol Empa, Lab Cellulose & Wood Mat, CH-8600 Dubendorf, Switzerland
[5] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, CH-8092 Zurich, Switzerland
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
aerogel; cellulose nanofibril; in situ growth; metal-organic framework; multifunctional; POROUS CARBON; NANOCELLULOSE; NANOPARTICLES; COMPOSITES;
D O I
10.1002/advs.202400403
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Improving interface connectivity of magnetic nanoparticles in carbon aerogels is crucial, yet challenging for assembling lightweight, elastic, high-performance, and multifunctional carbon architectures. Here, an in situ growth strategy to achieve high dispersion of metal-organic frameworks (MOFs)-anchored cellulose nanofibrils to enhance the interface connection quality is proposed. Followed by a facile freeze-casting and carbonization treatment, sustainable biomimetic porous carbon aerogels with highly dispersed and closely connected MOF-derived magnetic nano-capsules are fabricated. Thanks to the tight interface bonding of nano-capsule microstructure, these aerogels showcase remarkable mechanical robustness and flexibility, tunable electrical conductivity and magnetization intensity, and excellent electromagnetic wave absorption performance. Achieving a reflection loss of -70.8 dB and a broadened effective absorption bandwidth of 6.0 GHz at a filling fraction of merely 2.2 wt.%, leading to a specific reflection loss of -1450 dB mm-1, surpassing all carbon-based aerogel absorbers so far reported. Meanwhile, the aerogel manifests high magnetic sensing sensibility and excellent thermal insulation. This work provides an extendable in situ growth strategy for synthesizing MOF-modified cellulose nanofibril structures, thereby promoting the development of high-value-added multifunctional magnetic carbon aerogels for applications in electromagnetic compatibility and protection, thermal management, diversified sensing, Internet of Things devices, and aerospace. A strategy for in situ growing MOFs on cellulose nanofibrils is proposed to promote interface connectivity. Strong anchoring of MOFs produces a unique structure of nano-capsules tightly embedded in carbon skeletons. The product CoFe/carbon aerogels exhibit exceptional specific reflection loss of -1450 dB mm-1, surpassing all reported carbon aerogels, and demonstrate application potential in thermal management and magnetic sensing. image
引用
收藏
页数:10
相关论文
共 52 条
[1]   Effects of Size and Aggregation/Agglomeration of Nanoparticles on the Interfacial/Interphase Properties and Tensile Strength of Polymer Nanocomposites [J].
Ashraf, Muhammad Aqeel ;
Peng, Wanxi ;
Zare, Yasser ;
Rhee, Kyong Yop .
NANOSCALE RESEARCH LETTERS, 2018, 13
[2]   Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites [J].
Boland, Conor S. ;
Khan, Umar ;
Ryan, Gavin ;
Barwich, Sebastian ;
Charifou, Romina ;
Harvey, Andrew ;
Backes, Claudia ;
Li, Zheling ;
Ferreira, Mauro S. ;
Mobius, Matthias E. ;
Young, Robert J. ;
Coleman, Jonathan N. .
SCIENCE, 2016, 354 (6317) :1257-1260
[3]  
Chan X., 2023, CARBON, V213
[4]   Photoinduced Enhancement of Uranium Extraction from Seawater by MOF/Black Phosphorus Quantum Dots Heterojunction Anchored on Cellulose Nanofiber Aerogel [J].
Chen, Mengwei ;
Liu, Tao ;
Zhang, Xiaobin ;
Zhang, Ruoqian ;
Tang, Shuai ;
Yuan, Yihui ;
Xie, Zuji ;
Liu, Yinjiang ;
Wang, Hui ;
Fedorovich, Kuzin Victor ;
Wang, Ning .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (22)
[5]   Compressible and conductive multi-scale composite aerogel elastomers for electromagnetic wave absorption, energy harvesting, and piezoresistive sensing [J].
Chen, Yiming ;
He, Weiwei ;
Zhou, Hanlin ;
Shen, Jiahui ;
Li, Xiping ;
Zheng, Jiajia ;
Wu, Zhiyi .
NANO ENERGY, 2024, 119
[6]   Emerging Materials and Designs for Low- and Multi-Band Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy? [J].
Cheng, Junye ;
Zhang, Huibin ;
Ning, Mingqiang ;
Raza, Hassan ;
Zhang, Deqing ;
Zheng, Guangping ;
Zheng, Qingbin ;
Che, Renchao .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (23)
[7]   Functional Materials from Nanocellulose: Utilizing Structure-Property Relationships in Bottom-Up Fabrication [J].
De France, Kevin ;
Zeng, Zhihui ;
Wu, Tingting ;
Nystrom, Gustav .
ADVANCED MATERIALS, 2021, 33 (28)
[8]   MOF-Enabled Ion-Regulating Gel Electrolyte for Long-Cycling Lithium Metal Batteries Under High Voltage [J].
Fu, Xuewei ;
Hurlock, Matthew J. ;
Ding, Chenfeng ;
Li, Xiaoyu ;
Zhang, Qiang ;
Zhong, Wei-Hong .
SMALL, 2022, 18 (09)
[9]   A Highly Compressible and Stretchable Carbon Spring for Smart Vibration and Magnetism Sensors [J].
Gao, Huai-Ling ;
Wang, Ze-Yu ;
Cui, Chen ;
Bao, Jia-Zheng ;
Zhu, Yin-Bo ;
Xia, Jun ;
Wen, Shao-Meng ;
Wu, Heng-An ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2021, 33 (39)
[10]   Electronic Modulation Strategy for Mass-Producible Ultrastrong Multifunctional Biomass-Based Fiber Aerogel Devices: Interfacial Bridging [J].
Guan, Xiaomeng ;
Tan, Shujuan ;
Wang, Luqi ;
Zhao, Yue ;
Ji, Guangbin .
ACS NANO, 2023, 17 (20) :20525-20536