ON THE DISTRIBUTION OF DISTANCE SIGNLESS LAPLACIAN EIGENVALUES WITH GIVEN INDEPENDENCE AND CHROMATIC NUMBER

被引:0
|
作者
Pirzada, Shariefuddin [1 ]
Khan, Saleem [1 ]
Belardo, Francesco [2 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar, Kashmir, India
[2] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Naples, Italy
关键词
distance matrix; distance signless Laplacian matrix; spectral radius; independence number; chromatic number; SPECTRUM; MATRIX;
D O I
10.7151/dmgt.2524
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a connected graph G of order n, let D(G) be the distance matrix and Tr(G) be the diagonal matrix of vertex transmissions of G. The dis-tance signless Laplacian (dsL, for short) matrix of G is defined as DQ(G) = Tr(G) +D(G), and the corresponding eigenvalues are the dsL eigenvalues of G. For an interval I, let mDQ(G)I denote the number of dsL eigenvalues of G lying in the interval I. In this paper, for some prescribed interval I, we obtain bounds for mDQ(G)I in terms of the independence number alpha and the chromatic number chi of G. Furthermore, we provide lower bounds of partial differential 1Q(G), the dsL spectral radius, for certain families of graphs in terms of the order n and the independence number alpha, or the chromatic number chi.
引用
收藏
页码:111 / 128
页数:18
相关论文
共 50 条
  • [41] On the Distance and Distance Signless Laplacian Spectral Radii of Tricyclic Graphs
    Zhu, Zhongxun
    Zou, Xin
    Hong, Yunchao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (03) : 2587 - 2604
  • [42] On the distance and distance signless Laplacian spectral radii of bicyclic graphs
    Xing, Rundan
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (12) : 3955 - 3963
  • [43] The (distance) signless Laplacian spectral radius of digraphs with given arc connectivity
    Xi, Weige
    So, Wasin
    Wang, Ligong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 581 : 85 - 111
  • [44] On the Distance Signless Laplacian Spectrum of Graphs
    A. Alhevaz
    M. Baghipur
    E. Hashemi
    H. S. Ramane
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2603 - 2621
  • [45] MAJORIZATION BOUNDS FOR SIGNLESS LAPLACIAN EIGENVALUES
    Maden, A. Dilek
    Cevik, A. Sinan
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 781 - 794
  • [46] The Signless Laplacian Spectral Radius of Graphs with Given Number of Pendant Vertices
    Fan, Yi-Zheng
    Yang, Dan
    GRAPHS AND COMBINATORICS, 2009, 25 (03) : 291 - 298
  • [47] The maximum clique and the signless Laplacian eigenvalues
    Jianping Liu
    Bolian Liu
    Czechoslovak Mathematical Journal, 2008, 58 : 1233 - 1240
  • [48] On the Laplacian Estrada index of graphs with given chromatic number
    Zhu, Bao-Xuan
    ARS COMBINATORIA, 2017, 132 : 331 - 338
  • [49] On the maximal signless Laplacian spectral radius of graphs with given matching number
    Yu, Guihai
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2008, 84 (09) : 163 - 166
  • [50] On a conjecture for the signless Laplacian spectral radius of cacti with given matching number
    Shen, Yun
    You, Lihua
    Zhang, Minjie
    Li, Shuchao
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03) : 457 - 474