ON THE DISTRIBUTION OF DISTANCE SIGNLESS LAPLACIAN EIGENVALUES WITH GIVEN INDEPENDENCE AND CHROMATIC NUMBER

被引:0
|
作者
Pirzada, Shariefuddin [1 ]
Khan, Saleem [1 ]
Belardo, Francesco [2 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar, Kashmir, India
[2] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Naples, Italy
关键词
distance matrix; distance signless Laplacian matrix; spectral radius; independence number; chromatic number; SPECTRUM; MATRIX;
D O I
10.7151/dmgt.2524
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a connected graph G of order n, let D(G) be the distance matrix and Tr(G) be the diagonal matrix of vertex transmissions of G. The dis-tance signless Laplacian (dsL, for short) matrix of G is defined as DQ(G) = Tr(G) +D(G), and the corresponding eigenvalues are the dsL eigenvalues of G. For an interval I, let mDQ(G)I denote the number of dsL eigenvalues of G lying in the interval I. In this paper, for some prescribed interval I, we obtain bounds for mDQ(G)I in terms of the independence number alpha and the chromatic number chi of G. Furthermore, we provide lower bounds of partial differential 1Q(G), the dsL spectral radius, for certain families of graphs in terms of the order n and the independence number alpha, or the chromatic number chi.
引用
收藏
页码:111 / 128
页数:18
相关论文
共 50 条
  • [31] Bounds on the independence number and signless Laplacian index of graphs
    Liu, Huiqing
    Lu, Mei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 539 : 44 - 59
  • [32] Distance (Signless) Laplacian Eigenvalues of k-uniform Hypergraphs
    Liu, Xiangxiang
    Wang, Ligong
    TAIWANESE JOURNAL OF MATHEMATICS, 2022, : 1093 - 1111
  • [33] On the Distance Signless Laplacian Spectrum of Graphs
    Alhevaz, A.
    Baghipur, M.
    Hashemi, E.
    Ramane, H. S.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2603 - 2621
  • [34] COMPUTING THE RECIPROCAL DISTANCE SIGNLESS LAPLACIAN EIGENVALUES AND ENERGY OF GRAPHS
    Alhevaz, A.
    Baghipur, M.
    Ramane, H. S.
    MATEMATICHE, 2019, 74 (01): : 49 - 73
  • [35] On the distance signless Laplacian of a graph
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (06) : 1113 - 1123
  • [36] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    Pirzada, S.
    Khan, Saleem
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04)
  • [37] On the signless Laplacian index of cacti with a given number of pendant vertices
    Li, Shuchao
    Zhang, Minjie
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4400 - 4411
  • [38] Some results on the distance and distance signless Laplacian spectral radius of graphs and digraphs
    Li, Dan
    Wang, Guoping
    Meng, Jixiang
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 218 - 225
  • [39] On distance signless Laplacian spectrum and energy of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Hashemi, Ebrahim
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (02) : 326 - 340
  • [40] Some Results on the Bounds of Signless Laplacian Eigenvalues
    Li, Shuchao
    Tian, Yi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (01) : 131 - 141