Extracellular vesicles remodel tumor environment for cancer immunotherapy

被引:57
作者
Yue, Ming [1 ,2 ]
Hu, Shengyun [1 ]
Sun, Haifeng [1 ]
Tuo, Baojing [1 ,2 ]
Jia, Bin [3 ]
Chen, Chen [2 ]
Wang, Wenkang [4 ]
Liu, Jinbo [1 ]
Liu, Yang [5 ]
Sun, Zhenqiang [1 ,2 ]
Hu, Junhong [1 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Dept Colorectal Surg, Zhengzhou 450052, Henan, Peoples R China
[2] Zhengzhou Univ, Affiliated Hosp 1, Henan Inst Interconnected Intelligent Hlth Managem, Zhengzhou 450052, Henan, Peoples R China
[3] Zhengzhou Univ, Affiliated Hosp 1, Dept Oncol, Zhengzhou 450052, Henan, Peoples R China
[4] Zhengzhou Univ, Dept Breast Surg, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[5] Zhengzhou Univ, Affiliated Canc Hosp, Henan Canc Hosp, Dept Radiotherapy, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Extracellular vesicles; Tumor microenvironment; Cancer immunotherapy; PD-1; Non-coding RNA; Lymph node microenvironment; Engineered EVs; PRE-METASTATIC NICHE; CELL-DERIVED EXOSOMES; PD-L1; EXPRESSION; NONCODING RNAS; BREAST-CANCER; T-CELLS; MACROPHAGES; MICROENVIRONMENT; RECEPTOR; PROGRESSION;
D O I
10.1186/s12943-023-01898-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tumor immunotherapy has transformed neoplastic disease management, yet low response rates and immune complications persist as major challenges. Extracellular vesicles including exosomes have emerged as therapeutic agents actively involved in a diverse range of pathological conditions. Mounting evidence suggests that alterations in the quantity and composition of extracellular vesicles (EVs) contribute to the remodeling of the immune-suppressive tumor microenvironment (TME), thereby influencing the efficacy of immunotherapy. This revelation has sparked clinical interest in utilizing EVs for immune sensitization. In this perspective article, we present a comprehensive overview of the origins, generation, and interplay among various components of EVs within the TME. Furthermore, we discuss the pivotal role of EVs in reshaping the TME during tumorigenesis and their specific cargo, such as PD-1 and non-coding RNA, which influence the phenotypes of critical immune cells within the TME. Additionally, we summarize the applications of EVs in different anti-tumor therapies, the latest advancements in engineering EVs for cancer immunotherapy, and the challenges encountered in clinical translation. In light of these findings, we advocate for a broader understanding of the impact of EVs on the TME, as this will unveil overlooked therapeutic vulnerabilities and potentially enhance the efficacy of existing cancer immunotherapies.
引用
收藏
页数:20
相关论文
共 212 条
[1]   Loss of p53 drives neuron reprogramming in head and neck cancer [J].
Amit, Moran ;
Takahashi, Hideaki ;
Dragomir, Mihnea Paul ;
Lindemann, Antje ;
Gleber-Netto, Frederico O. ;
Pickering, Curtis R. ;
Anfossi, Simone ;
Osman, Abdullah A. ;
Ca, Yu ;
Wang, Rong ;
Knutsen, Erik ;
Shimizu, Masayoshi ;
Ivan, Cristina ;
Rao, Xiayu ;
Wang, Jing ;
Silverman, Deborah A. ;
Tam, Samantha ;
Zhao, Mei ;
Caulin, Carlos ;
Zinger, Assaf ;
Tasciotti, Ennio ;
Dougherty, Patrick M. ;
El-Naggar, Adel ;
Calin, George A. ;
Myers, Jeffrey N. .
NATURE, 2020, 578 (7795) :449-+
[2]   Non-coding RNA networks in cancer [J].
Anastasiadou, Eleni ;
Jacob, Leni S. ;
Slack, Frank J. .
NATURE REVIEWS CANCER, 2018, 18 (01) :5-18
[3]   Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma [J].
Andtbacka, Robert H. I. ;
Kaufman, Howard L. ;
Collichio, Frances ;
Amatruda, Thomas ;
Senzer, Neil ;
Chesney, Jason ;
Delman, Keith A. ;
Spitler, Lynn E. ;
Puzanov, Igor ;
Agarwala, Sanjiv S. ;
Milhem, Mohammed ;
Cranmer, Lee ;
Curti, Brendan ;
Lewis, Karl ;
Ross, Merrick ;
Guthrie, Troy ;
Linette, Gerald P. ;
Daniels, Gregory A. ;
Harrington, Kevin ;
Middleton, Mark R. ;
Miller, Wilson H., Jr. ;
Zager, Jonathan S. ;
Ye, Yining ;
Yao, Bin ;
Li, Ai ;
Doleman, Susan ;
VanderWalde, Ari ;
Gansert, Jennifer ;
Coffin, Robert S. .
JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (25) :2780-U98
[4]   TAMeless traitors: macrophages in cancer progression and metastasis [J].
Aras, Shweta ;
Zaidi, M. Raza .
BRITISH JOURNAL OF CANCER, 2017, 117 (11) :1583-1591
[5]   Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework [J].
Atkinson, AJ ;
Colburn, WA ;
DeGruttola, VG ;
DeMets, DL ;
Downing, GJ ;
Hoth, DF ;
Oates, JA ;
Peck, CC ;
Schooley, RT ;
Spilker, BA ;
Woodcock, J ;
Zeger, SL .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2001, 69 (03) :89-95
[6]   Clinical Implications of Exosomal PD-L1 in Cancer Immunotherapy [J].
Ayala-Mar, Sergio ;
Donoso-Quezada, Javier ;
Gonzalez-Valdez, Jose .
JOURNAL OF IMMUNOLOGY RESEARCH, 2021, 2021
[7]   Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review [J].
Azmi, Asfar S. ;
Bao, Bin ;
Sarkar, Fazlul H. .
CANCER AND METASTASIS REVIEWS, 2013, 32 (3-4) :623-642
[8]   Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts [J].
Baroni, S. ;
Romero-Cordoba, S. ;
Plantamura, I. ;
Dugo, M. ;
D'Ippolito, E. ;
Cataldo, A. ;
Cosentino, G. ;
Angeloni, V. ;
Rossini, A. ;
Daidone, M. G. ;
Iorio, M. V. .
CELL DEATH & DISEASE, 2016, 7 :e2312-e2312
[9]   Designer exosomes as next-generation cancer immunotherapy [J].
Bell, Brandon M. ;
Kirk, Isabel D. ;
Hiltbrunner, Stefanie ;
Gabrielsson, Susanne ;
Bultema, Jarred J. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2016, 12 (01) :163-169
[10]   DIVERSITY AND BIOLOGY OF CANCER-ASSOCIATED FIBROBLASTS [J].
Biffi, Giulia ;
Tuveson, David A. .
PHYSIOLOGICAL REVIEWS, 2021, 101 (01) :147-176