Energy conservation for weak solutions to the pressureless Euler-Navier-Stokes system in three-dimensional space

被引:1
作者
Chen, Senming [1 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
energy conservation; Euler equation; Navier-Stokes equations; weak solutions; INCOMPRESSIBLE EULER; DISSIPATION; CONJECTURE; ONSAGER;
D O I
10.1002/mma.9725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the energy conservation for the weak solution of the 3D Euler-Navier-Stokes system. we provide two sufficient conditions on the regularity of weak solutions to guarantee the conservation of total energy, which also including the initial energy. Due to the couple structure between inhomogeneous Euler equation and incompressible Navier-Stokes system, we adopt a variant of the method from R. Chen and C. Yu (J. Math. Pures Appl. 131 (2019), 1-16.) and J. Lions (Rend. Semin. Mat. Univ. Padova 30 (1960), 16-23.) to deal with the density of Euler flows and velocity of Navier-Stokes fluid.
引用
收藏
页码:1903 / 1914
页数:12
相关论文
共 50 条
[41]   On a special class of analytical solutions to the three-dimensional incompressible Navier-Stokes equations [J].
Nugroho, Gunawan ;
Ali, Ahmed M. S. ;
Karim, Zainal A. Abdul .
APPLIED MATHEMATICS LETTERS, 2009, 22 (11) :1639-1644
[42]   Stability of stationary solutions to the three-dimensional Navier-Stokes equations with surface tension [J].
Watanabe, Keiichi .
ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
[43]   Two-stage fourth-order gas-kinetic scheme for three-dimensional Euler and Navier-Stokes solutions [J].
Pan, Liang ;
Xu, Kun .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2018, 32 (10) :395-411
[44]   Vortex stretching and criticality for the three-dimensional Navier-Stokes equations [J].
Dascaliuc, R. ;
Grujic, Z. .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (11)
[45]   THREE-DIMENSIONAL SYSTEM OF GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS WITH DELAY [J].
Caraballo, Tomas ;
Real, Jose ;
Marquez, Antonio M. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (09) :2869-2883
[46]   Besov Space Regularity Conditions for Weak Solutions of the Navier–Stokes Equations [J].
Reinhard Farwig ;
Hermann Sohr ;
Werner Varnhorn .
Journal of Mathematical Fluid Mechanics, 2014, 16 :307-320
[47]   Energy conservation of the weak solution and the lower bound of possible singular solutions for a simplified three-dimensional Ericksen-Leslie system [J].
Zuo, Zhongbao .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (05)
[48]   Weak solutions for the stationary anisotropic and nonlocal compressible Navier-Stokes system [J].
Bresch, D. ;
Burtea, C. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 146 :183-217
[49]   Energy Conservation for 3D Euler and Navier-Stokes Equations in a Bounded Domain: Applications to Beltrami Flows [J].
Berselli, Luigi C. ;
Chiodaroli, Elisabetta ;
Sannipoli, Rossano .
JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (01)
[50]   Global existence of large solutions for the three-dimensional incompressible Navier-Stokes-Poisson-Nernst-Planck equations [J].
Zhao, Jihong ;
Li, Ying .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (15) :11933-11952