Unveiling the promoting effect of potassium on the structural evolution of iron catalysts during CO2 hydrogenation

被引:15
作者
Zhu, Jie [1 ]
Mu, Minchen [1 ]
Liu, Yi [1 ]
Zhang, Miao [1 ]
Zhang, Guanghui [1 ]
Cheng, Zening [2 ]
Yin, Ben Hang [4 ,5 ]
Yip, Alex C. K. [6 ]
Song, Chunshan [1 ,3 ]
Guo, Xinwen [1 ]
机构
[1] Dalian Univ Technol, PSU DUT Joint Ctr Energy Res, Sch Chem Engn, State Key Lab Fine Chem,Frontier Sci Ctr Smart Mat, Dalian 116024, Peoples R China
[2] Xinjiang Tianchi Energy Co Ltd, Zhundong Energy Res Inst, Changji 831100, Peoples R China
[3] Chinese Univ Hong Kong, Fac Sci, Dept Chem, Sha Tin New Town, Hong Kong, Peoples R China
[4] Victoria Univ Wellington, Robinson Res Inst, Fac Engn, Wellington, New Zealand
[5] Victoria Univ Wellington, MacDiarmid Inst Adv Mat & Nanotechnol, Wellington, New Zealand
[6] Univ Canterbury, Dept Chem & Proc Engn, Christchurch 8041, New Zealand
基金
中国国家自然科学基金;
关键词
Potassium; Iron carbide; Carburization; Structural evolution; CO2; hydrogenation; FISCHER-TROPSCH SYNTHESIS; CARBON-DIOXIDE; LIGHT OLEFINS; HYDROCARBONS; REDUCTION; SODIUM; OXIDE; ZINC;
D O I
10.1016/j.ces.2023.119228
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Understanding and modulating the dynamic structural evolution is of great significance in developing highperformance heterogeneous catalysts. This work investigates the effect of potassium (K) promoter on the carburization and oxidation of Fe phases during CO2 hydrogenation over an iron-based catalyst using in-situ Xray diffraction, in-situ infrared spectroscopy, and temperature-programmed techniques. The addition of K enhances CO2 adsorption of the catalyst, promotes the reaction of CO2 with the dissociated hydrogen, and accelerates the carburization of Fe(0) to Fe3C and then to Fe5C2. In addition to impacting the reactive microenvironment of the catalyst surface on the competitive adsorption and reactions, the addition of K also prevents the active Fe5C2 phase from oxidation during CO2 hydrogenation. With an optimized content of K and CO pretreatment, the iron-based catalysts were endowed with high catalytic activity for CO2 conversion to C2 -C4 olefins and C5+ long-chain hydrocarbons. This work provides insight into the correlation between the reactive microenvironment and the structural evolution of Fe catalysts doped with K promoter and shall be beneficial for future development of new catalytic materials for CO2 hydrogenation, and possibly other reactions.
引用
收藏
页数:9
相关论文
共 52 条
[21]   In situ FTIR spectroscopic study of the CO2 methanation mechanism on Ni/Ce0.5Zr0.5O2 [J].
Pan, Qiushi ;
Peng, Jiaxi ;
Wang, Sheng ;
Wang, Shudong .
CATALYSIS SCIENCE & TECHNOLOGY, 2014, 4 (02) :502-509
[22]   Evolution of the bulk structure and surface species on Fe-Ce catalysts during the Fischer-Tropsch synthesis [J].
Perez-Alonso, F. J. ;
Herranz, T. ;
Rojas, S. ;
Ojeda, M. ;
Lopez Granados, M. ;
Terreros, P. ;
Fierro, J. L. G. ;
Gracia, M. ;
Gancedo, J. R. .
GREEN CHEMISTRY, 2007, 9 (06) :663-670
[23]   Tandem Conversion of CO2 to Valuable Hydrocarbons in Highly Concentrated Potassium Iron Catalysts [J].
Ramirez, Adrian ;
Ould-Chikh, Samy ;
Gevers, Lieven ;
Chowdhury, Abhishek Dutta ;
Abou-Hamad, Edy ;
Aguilar-Tapia, Antonio ;
Hazemann, Jean-Louis ;
Wehbe, Nimer ;
Al Abdulghani, Abdullah J. ;
Kozlov, Sergey M. ;
Cavallo, Luigi ;
Gascon, Jorge .
CHEMCATCHEM, 2019, 11 (12) :2879-2886
[24]   Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO2 to Light Olefins and Aromatics [J].
Ramirez, Adrian ;
Chowdhury, Abhishek Dutta ;
Dokania, Abhay ;
Cnudde, Pieter ;
Caglapn, Mustafa ;
Yarulina, Irina ;
Abou-Hamad, Edy ;
Gevers, Lieven ;
Ould-Chikh, Samy ;
De Wispelaere, Kristof ;
van Speybroeck, Veronique ;
Gascon, Jorge .
ACS CATALYSIS, 2019, 9 (07) :6320-6334
[25]   Metal Organic Framework-Derived Iron Catalysts for the Direct Hydrogenation of CO2 to Short Chain Olefins [J].
Ramirez, Adrian ;
Gevers, Lieven ;
Bavykina, Anastasiya ;
Ould-Chikh, Samy ;
Gaston, Jorge .
ACS CATALYSIS, 2018, 8 (10) :9174-9182
[26]   Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts [J].
Riedel, T ;
Claeys, M ;
Schulz, H ;
Schaub, G ;
Nam, SS ;
Jun, KW ;
Choi, MJ ;
Kishan, G ;
Lee, KW .
APPLIED CATALYSIS A-GENERAL, 1999, 186 (1-2) :201-213
[27]   Turning Waste into Value: Potassium-Promoted Red Mud as an Effective Catalyst for the Hydrogenation of CO2 [J].
Russkikh, Artem ;
Shterk, Genrikh ;
Al-Solami, Bandar H. ;
Fadhel, Bandar A. ;
Ramirez, Adrian ;
Gascon, Jorge .
CHEMSUSCHEM, 2020, 13 (11) :2981-2987
[28]   A comprehensive review on different approaches for CO2 utilization and conversion pathways [J].
Saravanan, A. ;
Kumar, P. Senthil ;
Vo, Dai-Viet N. ;
Jeevanantham, S. ;
Bhuvaneswari, V ;
Narayanan, V. Anantha ;
Yaashikaa, P. R. ;
Swetha, S. ;
Reshma, B. .
CHEMICAL ENGINEERING SCIENCE, 2021, 236
[29]   Integrated Photothermal Nanoreactors for Efficient Hydrogenation of CO2 [J].
Shen, Jiahui ;
Tang, Rui ;
Wu, Zhiyi ;
Wang, Xiao ;
Chu, Mingyu ;
Cai, Mujin ;
Zhang, Chengcheng ;
Zhang, Liang ;
Yin, Kui ;
He, Le ;
Li, Chaoran .
TRANSACTIONS OF TIANJIN UNIVERSITY, 2022, 28 (04) :236-244
[30]   Understanding reaction-induced restructuring of well-defined FexOyCz compositions and its effect on CO2 hydrogenation [J].
Skrypnik, Andrey S. ;
Yang, Qingxin ;
Matvienko, Alexander A. ;
Bychkov, Victor Yu ;
Tulenin, Yuriy P. ;
Lund, Henrik ;
Petrov, Sergey A. ;
Kraehnert, Ralph ;
Arinchtein, Aleks ;
Weiss, Jana ;
Brueckner, Angelika ;
Kondratenko, Evgenii, V .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 291