A proof of a conjecture on the distance spectral radius

被引:3
作者
Wang, Yanna [1 ]
Zhou, Bo [2 ]
机构
[1] Guangdong Commun Polytech, Basic Courses Dept, Guangzhou 510650, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Distance spectral radius; Cactus; Hypertree; Distance matrix; LARGEST EIGENVALUE; GRAPHS; MATRIX;
D O I
10.1016/j.laa.2023.05.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A cactus is a connected graph in which any two cycles have at most one common vertex. We determine the unique graph that maximizes the distance spectral radius over all cacti with fixed numbers of vertices and cycles, and thus prove a conjecture on the distance spectral radius of cacti in Bose et al. [4]. We prove the result in the context of hypertrees. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:124 / 154
页数:31
相关论文
共 16 条
[1]   Distance spectra of graphs: A survey [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 :301-386
[2]   TOPOLOGICAL INDEXES AND REAL NUMBER VERTEX INVARIANTS BASED ON GRAPH EIGENVALUES OR EIGENVECTORS [J].
BALABAN, AT ;
CIUBOTARIU, D ;
MEDELEANU, M .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1991, 31 (04) :517-523
[3]  
Berge C., 1989, Hypergraphs: Combinatorics of Finite Sets
[4]   On the distance spectral radius of cacti [J].
Bose, Surya Sekhar ;
Nath, Milan ;
Paul, Somnath .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (09) :2128-2141
[5]   ADDRESSING PROBLEM FOR LOOP SWITCHING [J].
GRAHAM, RL ;
POLLAK, HO .
BELL SYSTEM TECHNICAL JOURNAL, 1971, 50 (08) :2495-+
[6]  
Gutman I, 1998, INDIAN J CHEM A, V37, P569
[7]   Distance spectral radius of uniform hypergraphs [J].
Lin, Hongying ;
Zhou, Bo .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 506 :564-578
[8]  
Minc Henryk., 1988, NONNEGATIVE MATRICES
[9]  
Powers D., 1990, LINEAR MULTILINEAR A, V28, P75, DOI [10.1080/03081089008818032, DOI 10.1080/03081089008818032]
[10]   q-Analogs of distance matrices of 3-hypertrees [J].
Sivasubramanian, Sivaramakrishnan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (08) :1234-1248