A novel hybrid approach for computing numerical solution of the time-fractional nonlinear one and two-dimensional partial integro-differential equation

被引:14
作者
Rawani, Mukesh Kumar [1 ]
Verma, Amit Kumar [2 ]
Cattani, Carlo [3 ]
机构
[1] Govt Polytech Sheikhpura, Bihar 811311, India
[2] Indian Inst Technol Patna, Dept Math, Patna 801106, Bihar, India
[3] Largo Univ, Univ Tuscia, Engn Sch DEIM, I-01100 Viterbo, Italy
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2023年 / 118卷
关键词
Quasilinearization; Nonstandard finite difference scheme; Haar wavelets; Partial integro-differential equation; FINITE-DIFFERENCE SCHEMES; HAAR WAVELET APPROXIMATION; OPERATIONAL MATRIX; BURGERS-EQUATION; DIFFUSION; SUBDIFFUSION; MODEL;
D O I
10.1016/j.cnsns.2022.106986
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we develop a computational technique for solving the nonlinear time-fractional one and two-dimensional partial integro-differential equation with a weakly singular kernel. For the approximation of spatial derivatives, we apply the Haar wavelets collocation method whereas, for the time-fractional derivative, we use the nonstandard finite difference (NSFD) scheme. We implement the quasilinearization technique to deal with the nonlinear term and product trapezoidal rule for the approximation of integral term. To demonstrate the accuracy of the method, we investigate several test problems and report the accuracy of the method. The convergence and stability of the proposed method are also discussed.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 74 条
[1]   B-spline solution of fractional integro partial differential equation with a weakly singular kernel [J].
Arshed, Saima .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (05) :1565-1581
[2]   Biorthogonal multiwavelets on the interval for numerical solutions of Burgers' equation [J].
Ashpazzadeh, Elmira ;
Han, Bin ;
Lakestani, Mehrdad .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 :510-534
[3]  
Avudainayagam A, 1999, COMMUN NUMER METH EN, V15, P589, DOI 10.1002/(SICI)1099-0887(199908)15:8<589::AID-CNM272>3.0.CO
[4]  
2-Z
[5]  
Awawdeh F, 2011, ANN UNIV CRAIOVA-MAT, V38, P1
[6]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[7]   A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator [J].
Baleanu, D. ;
Jajarmi, A. ;
Sajjadi, S. S. ;
Mozyrska, D. .
CHAOS, 2019, 29 (08)
[8]   New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator [J].
Baleanu, Dumitru ;
Sajjadi, Samaneh Sadat ;
Jajarmi, Amin ;
Asad, Jihad H. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (04)
[9]  
Bateman Harry, 1915, MONTH WEATHER REV, V43, P163, DOI [DOI 10.1175/1520-0493(1915)432.0.CO
[10]  
2, 10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO