Highly enhanced thermal conductance across metal/graphene/SiO2 interface by ion bombardment

被引:3
作者
Zhao, Yu [1 ]
Xu, Wei [1 ]
Huang, Shuyu [1 ]
Ma, Dexian [1 ]
Tao, Yi [1 ]
Wang, Qun [2 ]
Sha, Jingjie [1 ]
Yang, Juekuan [1 ]
机构
[1] Southeast Univ, Sch Mech Engn, Jiangsu Key Lab Design & Manufacture Micronano Bio, Nanjing 211189, Peoples R China
[2] Special Equipment Safety Supervis Inspect Inst Jia, Nanjing 210036, Peoples R China
基金
中国国家自然科学基金;
关键词
Interfacial thermal conductance; Al; graphene; SiO2; interface; Ion bombardment; Adsorption interaction; Thermal management; HEAT-CONDUCTION; GRAPHENE; METAL; TRANSPORT; FUNCTIONALIZATION; STRENGTH; DEFECTS; ENERGY; FILMS; OXIDE;
D O I
10.1016/j.icheatmasstransfer.2022.106560
中图分类号
O414.1 [热力学];
学科分类号
摘要
Low thermal conductance (G) across metal/graphene interfaces presents an enormous challenge for the heat dissipation in graphene-based devices. In this paper, the heat conduction across Al/graphene/SiO2 interface at different doses of gallium (Ga) ion bombardment are explored. It is found that G of Al/graphene/SiO2 interface gradually rises with increasing dose until a peak value is obtained at a dose of 6.88 x 1012 ions/cm2. The maximum enhancement in G of Al/ion-bombarded graphene/SiO2 interface is measured to be almost 6 times as much as that of Al/pristine graphene/SiO2 interface. Such a large enhancement in G is ascribed to the recon-struction of C/O bonds on the ion-bombarded graphene surface, which intensifies the adsorption interaction between Al film and ion-bombarded graphene. This paper provides a facile approach for tailoring the thermal transport cross metal/graphene interfaces, which ultimately benefits the effective thermal management of graphene-based devices.
引用
收藏
页数:7
相关论文
共 46 条
[1]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[2]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[3]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[4]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[5]   Interfacial thermal resistance: Past, present, and future [J].
Chen, Jie ;
Xu, Xiangfan ;
Zhou, Jun ;
Li, Baowen .
REVIEWS OF MODERN PHYSICS, 2022, 94 (02)
[6]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758
[7]   Probing the Nature of Defects in Graphene by Raman Spectroscopy [J].
Eckmann, Axel ;
Felten, Alexandre ;
Mishchenko, Artem ;
Britnell, Liam ;
Krupke, Ralph ;
Novoselov, Kostya S. ;
Casiraghi, Cinzia .
NANO LETTERS, 2012, 12 (08) :3925-3930
[8]   Modifying Surface Energy of Graphene via Plasma-Based Chemical Functionalization to Tune Thermal and Electrical Transport at Metal Interfaces [J].
Foley, Brian M. ;
Hernandez, Sandra C. ;
Duda, John C. ;
Robinson, Jeremy T. ;
Walton, Scott G. ;
Hopkins, Patrick E. .
NANO LETTERS, 2015, 15 (08) :4876-4882
[9]   Doping graphene with metal contacts [J].
Giovannetti, G. ;
Khomyakov, P. A. ;
Brocks, G. ;
Karpan, V. M. ;
van den Brink, J. ;
Kelly, P. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)
[10]   Functionalization mediates heat transport in graphene nanoflakes [J].
Han, Haoxue ;
Zhang, Yong ;
Wang, Nan ;
Samani, Majid Kabiri ;
Ni, Yuxiang ;
Mijbil, Zainelabideen Y. ;
Edwards, Michael ;
Xiong, Shiyun ;
Saaskilahti, Kimmo ;
Murugesan, Murali ;
Fu, Yifeng ;
Ye, Lilei ;
Sadeghi, Hatef ;
Bailey, Steven ;
Kosevich, Yuriy A. ;
Lambert, Colin J. ;
Liu, Johan ;
Volz, Sebastian .
NATURE COMMUNICATIONS, 2016, 7