Pulsating magnetohydrodynamic flow of Fe3O4-blood based micropolar nanofluid between two vertical porous walls with Cattaneo-Christov heat flux and

被引:16
|
作者
Rajkumar, D. [1 ,2 ]
Reddy, A. Subramanyam [1 ]
Narayana, P. V. Satya [1 ]
Jagadeshkumar, K. [1 ]
Chamkha, Ali J. [3 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
[2] Sathyabama Inst Sci & Technol, Dept Math, Chennai 600119, India
[3] Kuwait Coll Sci & Technol, Fac Engn, Doha 35004, Kuwait
关键词
Pulsatile flow; Micropolar nanofluid; Entropy generation; Thermal radiation; Joule heating; MHD; NON-NEWTONIAN NANOFLUID; THERMAL-RADIATION; STRETCHING SHEET; BOUNDARY-LAYER; MHD; BLOOD; NANOPARTICLES;
D O I
10.1016/j.jmmm.2023.170564
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present article is aimed to investigate the impact of entropy generation on pulsating hydromagnetic flow of a micropolar nanofluid between two vertical porous walls using the Cattaneo-Christov heat flux model. Here Fe3O4(magnetite) is taken as a nanoparticle and blood as micropolar fluid (base fluid). The significance of viscous dissipation, Ohmic heating, and thermal radiation are considered. This model is noteworthy in the field of magnetic bioseparation, pressure surges, magnetofection agent, biomedical engineering, cancer therapeutic, artificial kidney, brain tumors, and nano-drug delivery in the arteries. The governing partial differential equations are transformed into the system of ordinary differential equations by deploying the perturbation process and then solved numerically by employing the fourth-order Runge-Kutta scheme with the support of the shooting technique. The flow variables like velocity, microrotation, temperature, entropy generation, and Bejan number are depicted graphically and discussed in detail. The heat transfer rate is displayed through a table. The results depict that the velocity is diminishing with the enhancement of coupling parameter, Hartmann number, and nanoparticle volume fraction. The temperature of micropolar nanofluid is increasing with an increment of viscous dissipation, thermal radiation, and heat source while it is reducing with the enhancement of magnetic field, thermal relaxation time, and heat sink parameter. The entropy generation is diminished by increasing the values of Hartmann number, thermal relaxation, and coupling parameter. Further, the Bejan number is enhanced by varying thermal radiation and nanoparticle volume fraction.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] 3D Casson nanofluid flow over slendering surface in a suspension of gyrotactic microorganisms with Cattaneo-Christov heat flux
    Nagendramma, V.
    Raju, C. S. K.
    Mallikarjuna, B.
    Shehzad, S. A.
    Leelarathnam, A.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2018, 39 (05) : 623 - 638
  • [22] Entropy generation on chemically reactive hydromagnetic oscillating flow of third grade nanofluid in a porous channel with Cattaneo-Christov heat flux
    Reddy, A. Subramanyam
    Govindarajulu, K.
    Beg, O. Anwar
    Prasad, V. Ramachandra
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2023, 30 (01) : 9 - 22
  • [23] MHD Cattaneo-Christov Heat and Mass Fluxes with Nanofluid Flow in a Porous Medium between Dual Stretchable Rotating Disks
    Habu, P. N.
    Mfon, R. E.
    Eke, C. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (05) : 1115 - 1129
  • [24] Hybrid nanofluid flow over two different geometries with Cattaneo-Christov heat flux model and heat generation: A model with correlation coefficient and probable error
    Garia, Rashmi
    Rawat, Sawan Kumar
    Kumar, Manoj
    Yaseen, Moh
    CHINESE JOURNAL OF PHYSICS, 2021, 74 : 421 - 439
  • [25] Study of Activation Energy of Magnetohydrodynamic Radiative Casson Nanofluid With Darcy-Forchheimer Flow and Cattaneo-Christov Heat Flux Model
    Younus, Mohammed
    Venkatalakshmi, A.
    Ramesh, Vajja
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (02): : 981 - 999
  • [26] Casson Nanofluid Flow with Cattaneo-Christov Heat Flux and Chemical Reaction Past a Stretching Sheet in the Presence of Porous Medium
    Ahmed, Mahzad
    Yousaf, Raja Mussadaq
    Hassan, Ali
    Goud, B. Shankar
    FRONTIERS IN HEAT AND MASS TRANSFER, 2024, 22 (04): : 1261 - 1276
  • [27] ELECTROMAGNETIC HYDRODYNAMIC FLOW AND HEAT TRANSFER OF A CASSON NANOFLUID Fe3O4-BLOOD IN A POROUS MEDIUM
    Petrovic, Jelena D.
    Nikodijevic Djordjevic, Milica D.
    Kocic, Milos M.
    THERMAL SCIENCE, 2023, 27 (6A): : 4461 - 4472
  • [28] Computation of Cattaneo-Christov heat and mass flux model in Williamson nanofluid flow with bioconvection and thermal radiation through a vertical slender cylinder
    Farooq, Umar
    Waqas, Hassan
    Makki, Roa
    Ali, Mohamed R.
    Alhushaybari, Abdullah
    Muhammad, Taseer
    Imran, Muhammad
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 42
  • [29] Brownian motion and thermophoretic diffusion impact on Darcy-Forchheimer flow of bioconvective micropolar nanofluid between double disks with Cattaneo-Christov heat flux
    Shahzad, Arfan
    Imran, Muhammad
    Tahir, Madeeha
    Khan, Shan Ali
    Akgul, Ali
    Abdullaev, Sherzod
    Park, Choonkil
    Zahran, Heba Y.
    Yahia, Ibrahim S.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 62 : 1 - 15
  • [30] Effect of Cattaneo-Christov Heat Flux on Radiative Hydromagnetic Nanofluid Flow between Parallel Plates using Spectral Quasilinearization Method
    Magodora, Mangwiro
    Mondal, Hiranmoy
    Sibanda, Precious
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2022, 8 (03): : 865 - 875