Machine learning and radiomics for segmentation and classification of adnexal masses on ultrasound

被引:3
作者
Barcroft, Jennifer F. [1 ,2 ]
Linton-Reid, Kristofer [3 ]
Landolfo, Chiara [2 ]
Al-Memar, Maya [1 ,2 ]
Parker, Nina [1 ,2 ]
Kyriacou, Chris [1 ,2 ]
Munaretto, Maria [4 ]
Fantauzzi, Martina [5 ]
Cooper, Nina [1 ,2 ]
Yazbek, Joseph [2 ]
Bharwani, Nishat [6 ]
Lee, Sa Ra [7 ]
Kim, Ju Hee [7 ]
Timmerman, Dirk [1 ,8 ,9 ]
Posma, Joram [1 ]
Savelli, Luca [4 ]
Saso, Srdjan [2 ,3 ]
Aboagye, Eric O. [3 ]
Bourne, Tom [1 ,2 ,9 ]
机构
[1] Imperial Coll London, Dept Metab Digest & Reprod, London, England
[2] Imperial Coll Healthcare NHS Trust, Dept Obstet & Gynaecol, London, England
[3] Imperial Coll London, Dept Surg & Canc, London, England
[4] Osped Morgagni Pierantoni, Dept Obstet & Gynaecol, Forli, Italy
[5] Univ Milano Bicocca, Dept Med & Surg, Milan, Italy
[6] Imperial Coll Healthcare NHS Trust, Dept Radiol, London, England
[7] Asan Med Ctr, Dept Obstet & Gynaecol, Seoul, South Korea
[8] Univ Hosp Leuven, Dept Obstet & Gynecol, Leuven, Belgium
[9] Katholieke Univ Leuven, Dept Dev & Regenerat, Leuven, Belgium
基金
英国医学研究理事会;
关键词
OVARIAN-CANCER; EXTERNAL VALIDATION; DIAGNOSIS; MULTICENTER; MALIGNANCY; MORTALITY; SELECTION; MODELS; IMAGES; RULES;
D O I
10.1038/s41698-024-00527-8
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Ultrasound-based models exist to support the classification of adnexal masses but are subjective and rely upon ultrasound expertise. We aimed to develop an end-to-end machine learning (ML) model capable of automating the classification of adnexal masses. In this retrospective study, transvaginal ultrasound scan images with linked diagnoses (ultrasound subjective assessment or histology) were extracted and segmented from Imperial College Healthcare, UK (ICH development dataset; n = 577 masses; 1444 images) and Morgagni-Pierantoni Hospital, Italy (MPH external dataset; n = 184 masses; 476 images). A segmentation and classification model was developed using convolutional neural networks and traditional radiomics features. Dice surface coefficient (DICE) was used to measure segmentation performance and area under the ROC curve (AUC), F1-score and recall for classification performance. The ICH and MPH datasets had a median age of 45 (IQR 35-60) and 48 (IQR 38-57) years old and consisted of 23.1% and 31.5% malignant cases, respectively. The best segmentation model achieved a DICE score of 0.85 +/- 0.01, 0.88 +/- 0.01 and 0.85 +/- 0.01 in the ICH training, ICH validation and MPH test sets. The best classification model achieved a recall of 1.00 and F1-score of 0.88 (AUC:0.93), 0.94 (AUC:0.89) and 0.83 (AUC:0.90) in the ICH training, ICH validation and MPH test sets, respectively. We have developed an end-to-end radiomics-based model capable of adnexal mass segmentation and classification, with a comparable predictive performance (AUC 0.90) to the published performance of expert subjective assessment (gold standard), and current risk models. Further prospective evaluation of the classification performance of this ML model against existing methods is required.
引用
收藏
页数:10
相关论文
共 57 条
  • [1] GyneScan: An Improved Online Paradigm for Screening of Ovarian Cancer via Tissue Characterization
    Acharya, U. Rajendra
    Sree, S. Vinitha
    Kulshreshtha, Sanjeev
    Molinari, Filippo
    Koh, Joel En Wei
    Saba, Luca
    Suri, Jasjit S.
    [J]. TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2014, 13 (06) : 529 - 539
  • [2] Ovarian Tumor Characterization and Classification Using Ultrasound-A New Online Paradigm
    Acharya, U. Rajendra
    Sree, S. Vinitha
    Saba, Luca
    Molinari, Filippo
    Guerriero, Stefano
    Suri, Jasjit S.
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (03) : 544 - 553
  • [3] An Evaluation of the Effectiveness of Image-based Texture Features Extracted from Static B-mode Ultrasound Images in Distinguishing between Benign and Malignant Ovarian Masses
    Al-karawi, Dhurgham
    Al-Assam, Hisham
    Du, Hongbo
    Sayasneh, Ahmad
    Landolfo, Chiara
    Timmerman, Dirk
    Bourne, Tom
    Jassim, Sabah
    [J]. ULTRASONIC IMAGING, 2021, 43 (03) : 124 - 138
  • [4] Ovarian-Adnexal Reporting Lexicon for Ultrasound: A White Paper of the ACR Ovarian-Adnexal Reporting and Data System Committee
    Andreotti, Rochelle F.
    Timmerman, Dirk
    Benacerraf, Beryl R.
    Bennett, Genevieve L.
    Bourne, Tom
    Brown, Douglas L.
    Coleman, Beverly G.
    Frates, Mary C.
    Froyman, Wouter
    Goldstein, Steven R.
    Hamper, Ulrike M.
    Horrow, Mindy M.
    Hernanz-Schulman, Marta
    Reinhold, Caroline
    Strachowski, Lori M.
    Glanc, Phyllis
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2018, 15 (10) : 1415 - 1429
  • [5] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] Effect of Screening on Ovarian Cancer Mortality The Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial
    Buys, Saundra S.
    Partridge, Edward
    Black, Amanda
    Johnson, Christine C.
    Lamerato, Lois
    Isaacs, Claudine
    Reding, Douglas J.
    Greenlee, Robert T.
    Yokochi, Lance A.
    Kessel, Bruce
    Crawford, E. David
    Church, Timothy R.
    Andriole, Gerald L.
    Weissfeld, Joel L.
    Fouad, Mona N.
    Chia, David
    O'Brien, Barbara
    Ragard, Lawrence R.
    Clapp, Jonathan D.
    Rathmell, Joshua M.
    Riley, Thomas L.
    Hartge, Patricia
    Pinsky, Paul F.
    Zhu, Claire S.
    Izmirlian, Grant
    Kramer, Barnett S.
    Miller, Anthony B.
    Xu, Jian-Lun
    Prorok, Philip C.
    Gohagan, John K.
    Berg, Christine D.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2011, 305 (22): : 2295 - 2303
  • [8] Cancer Research UK, Ovarian cancer Survival Statistics 2020
  • [9] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [10] Deep Learning Radiomics of Preoperative Breast MRI for Prediction of Axillary Lymph Node Metastasis in Breast Cancer
    Chen, Yanhong
    Wang, Lijun
    Dong, Xue
    Luo, Ran
    Ge, Yaqiong
    Liu, Huanhuan
    Zhang, Yuzhen
    Wang, Dengbin
    [J]. JOURNAL OF DIGITAL IMAGING, 2023, 36 (04) : 1323 - 1331