Positive solutions to the planar logarithmic Choquard equation with exponential nonlinearity

被引:6
作者
Cassani, Daniele [1 ,2 ]
Du, Lele [1 ,2 ]
Liu, Zhisu [3 ,4 ]
机构
[1] Univ Insubria, Dipartimento Sci & Alta Tecnol, Como, Italy
[2] RISM Riemann Int Sch Math Villa Toeplitz, Via GB Vico 46, I-21100 Varese, Italy
[3] China Univ Geosci, Ctr Math Sci, Sch Math & Phys, Wuhan 430074, Hubei, Peoples R China
[4] Univ Insubria Villa Toeplitz, Dipartimento Sci & Alta Tecnol, Via GB Vico 46, I-21100 Varese, Italy
基金
中国国家自然科学基金;
关键词
Schrodinger-Poisson systems; Asymptotic analysis; Critical growth; Concentration-compactness principle; Variational method; ELLIPTIC-EQUATIONS; EXISTENCE;
D O I
10.1016/j.na.2023.113479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the following nonlinear Choquard equation ( ) -Au + u= ln 1 |x | * F(u) f (u), in R2, where f is an element of C1(R, R) and F is the primitive of the nonlinearity f vanishing at zero. We use an asymptotic approximation approach to establish the existence of positive solutions to the above problem in the standard Sobolev space H1(R2). We give a new proof and at the same time extend part of the results established in (Cassani-Tarsi, Calc.Var.PDE, 2021) [11].
引用
收藏
页数:19
相关论文
共 25 条
[1]   Groundstates of the Choquard equations with a sign-changing self-interaction potential [J].
Battaglia, Luca ;
Van Schaftingen, Jean .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03)
[2]   Existence of Groundstates for a Class of Nonlinear Choquard Equations in the Plane [J].
Battaglia, Luca ;
Van Schaftingen, Jean .
ADVANCED NONLINEAR STUDIES, 2017, 17 (03) :581-594
[3]  
Bennett C., 1988, Pure and Applied Mathematics, V129
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[5]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[6]   Quasilinear logarithmic Choquard equations with exponential growth in RN [J].
Bucur, Claudia ;
Cassani, Daniele ;
Tarsi, Cristina .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 328 :261-294
[7]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435
[8]   On a planar Choquard equation involving exponential critical growth [J].
Carvalho, J. ;
Medeiros, E. ;
Ribeiro, B. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (06)
[9]   Equivalent Moser type inequalities in R2 and the zero mass case [J].
Cassani, D. ;
Sani, F. ;
Tarsi, C. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (11) :4236-4263
[10]   Nonlocal planar Schrödinger-Poisson systems in the fractional Sobolev limiting case [J].
Cassani, Daniele ;
Liu, Zhisu ;
Romani, Giulio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 383 :214-269