Comparative analysis and optimisation of hydrogen combustion mechanism for laminar burning velocity calculation in combustion engine modelling

被引:8
作者
Wang, Yuanfeng [1 ]
Verhelst, Sebastian [1 ,2 ]
机构
[1] Univ Ghent, Fac Engn & Architecture, Dept Electromech Syst & Met Engn, Sint Pietersnieuwstr 41, B-9000 Ghent, Belgium
[2] Lund Univ, Fac Engn, Dept Energy Sci, Ole Romers vag 1, S-221 00 Lund, Sweden
关键词
Hydrogen; Laminar burning velocity; Combustion mechanism; Combustion engine; Lean combustion; Water injection; KINETIC MECHANISM; FLAME SPEED; RATE PARAMETERS; PRESSURE; MIXTURES; UNCERTAINTY; TEMPERATURE; FUEL; CO;
D O I
10.1016/j.ijhydene.2023.12.214
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen stands out as a compelling alternative to fossil fuels for combustion engines. Predictive combustion models are instrumental in developing hydrogen -fuelled engines. A fundamental metric of these models is the laminar burning velocity (LBV), which can be precisely determined through laminar flame propagation simulations. In this context, the selection of an appropriate combustion mechanism is critical. This paper aims to propose the appropriate combustion mechanism for calculating LBV in predictive combustion models of hydrogen -fuelled engines. 15 state-of-the-art combustion mechanisms were applied to reproduce the LBV measurements in engine -like conditions, especially considering the application of lean combustion and water injection. The FFCM 1.0 mechanism was identified from them and further optimised to improve its prediction accuracy at elevated pressures for the lean mixture. The maximum deviation of LBV was reduced from 17.6 % to 8.7 % by this optimisation, in comparison to 10.5 % for its closest competitor mechanism, ELTE (Varga et al., 2015).
引用
收藏
页码:880 / 893
页数:14
相关论文
共 66 条
[41]   Uncertainty of the rate parameters of several important elementary reactions of the H2 and syngas combustion systems [J].
Nagy, Tibor ;
Valko, Eva ;
Sedyo, Inez ;
Zsely, Istvan Gy ;
Pilling, Michael J. ;
Turanyi, Tamas .
COMBUSTION AND FLAME, 2015, 162 (05) :2059-2076
[42]   A comprehensive modeling study of hydrogen oxidation [J].
O Conaire, M ;
Curran, HJ ;
Simmie, JM ;
Pitz, WJ ;
Westbrook, CK .
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2004, 36 (11) :603-622
[43]   Comparison of the performance of several recent hydrogen combustion mechanisms [J].
Olm, Carsten ;
Zsely, Istvan Gy ;
Palvolgyi, Robert ;
Varga, Tumas ;
Nagy, Tibor ;
Curran, Henry J. ;
Turanyi, Tunas .
COMBUSTION AND FLAME, 2014, 161 (09) :2219-2234
[44]  
Papp M, 2022, Optima++ v2.1: a general C++ framework for performing combustion simulations and mechanism optimization, P2022
[45]   Measurements of the laminar burning velocity of hydrogen-air premixed flames [J].
Pareja, Jhon ;
Burbano, Hugo J. ;
Ogami, Yasuhiro .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (04) :1812-1818
[46]   Influence of initial temperature on laminar burning velocity in hydrogen-air mixtures as potential for green energy carrier [J].
Porowski, Rafal ;
Kowalik, Robert ;
Grzmiaczka, Malgorzata ;
Jurisevic, Nebojsa ;
Gawdzik, Jaroslaw .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2023, 146
[47]  
Ranzi E., 2020, SYNGAS H2CO MECH VER
[48]   IJER editorial: The future of the internal combustion engine [J].
Reitz, R. D. ;
Ogawa, H. ;
Payri, R. ;
Fansler, T. ;
Kokjohn, S. ;
Moriyoshi, Y. ;
Agarwal, A. K. ;
Arcoumanis, D. ;
Assanis, D. ;
Bae, C. ;
Boulouchos, K. ;
Canakci, M. ;
Curran, S. ;
Denbratt, I. ;
Gavaises, M. ;
Guenthner, M. ;
Hasse, C. ;
Huang, Z. ;
Ishiyama, T. ;
Johansson, B. ;
Johnson, T. V. ;
Kalghatgi, G. ;
Koike, M. ;
Kong, S. C. ;
Leipertz, A. ;
Miles, P. ;
Novella, R. ;
Onorati, A. ;
Richter, M. ;
Shuai, S. ;
Siebers, D. ;
Su, W. ;
Trujillo, M. ;
Uchida, N. ;
Vaglieco, B. M. ;
Wagner, R. M. ;
Zhao, H. .
INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2020, 21 (01) :3-10
[49]  
Sirjean B., 2009, JetSurF version 1.1
[50]  
Smith G., 2016, FDN FUEL CHEM MODEL