RATE OF CONVERGENCE BY KANTOROVICH TYPE OPERATORS INVOLVING ADJOINT BERNOULLI POLYNOMIALS

被引:5
作者
Yilmaz, Mine Menekse [1 ]
机构
[1] Gaziantep Univ, Fac Arts & Sci, Dept Math, Gaziantep, Turkiye
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2023年 / 114卷 / 128期
关键词
Bernoulli polynomials; Korovkin theorem; generating functions; Voronovskaya-type theorem; modulus of smoothness; rate of convergence; APPROXIMATION;
D O I
10.2298/PIM2328051M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a sequence of positive linear operators involving adjoint Bernoulli polynomials of the first kind, and we focus on the approximation properties of these operators. One of the main objectives is to get estimates for the order of approximation by means of first-order modulus of continuity, the Lipschitz condition, first modulus of derivative and a combination of first-order modulus of continuity and extended second-order modulus. Further, we give Voronovskaya type and Gruss-Voronovskaya type asymptotic results. Finally, we give two examples for error estimation by using Maple software.
引用
收藏
页码:51 / 62
页数:12
相关论文
共 29 条
[1]   On Multiple Interpolation Functions of the Norlund-Type q-Euler Polynomials [J].
Acikgoz, Mehmet ;
Simsek, Yilmaz .
ABSTRACT AND APPLIED ANALYSIS, 2009,
[2]  
Agyuz E., 2021, Adiyaman University Journal of Science, V11, P244
[3]  
Appell P., 1880, Annales Scientifiques de l'cole Normale Suprieure, V9, P119
[4]   Approximation by Kantorovich-Szasz Type Operators Based on Brenke Type Polynomials [J].
Atakut, Cigdem ;
Buyukyazici, Ibrahim .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (12) :1488-1502
[5]  
Barbosu D., 2004, J. Inequal. Pure Appl. Math, V5, P1
[6]  
Bernstein S. N., 1913, Commun. Soc. Math. Kharkov., V13, P1, DOI [10.2307/27203467, DOI 10.2307/27203467]
[7]   Polynomial Approximation of Anisotropic Analytic Functions of Several Variables [J].
Bonito, Andrea ;
DeVore, Ronald ;
Guignard, Diane ;
Jantsch, Peter ;
Petrova, Guergana .
CONSTRUCTIVE APPROXIMATION, 2021, 53 (02) :319-348
[8]   Approximation by generalized Bernstein-Stancu operators [J].
Cetin, Nursel ;
Radu, Voichita Adriana .
TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (04) :2032-2048
[9]  
Cheney E W., 1964, Riv. Mat. Univ. Parma, V2, P77
[10]  
Gal SG., 2015, Jaen J. Approx, V7, P97