High-Performance La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolyte-Based Direct Raw Brown Coal Fuel Cells

被引:6
|
作者
Chen, Xiao [1 ]
Wu, Can [1 ]
Hao, Senran [1 ]
Liu, Boyuan [1 ]
Lu, Tengda [1 ]
Dong, Peng [1 ]
Zhang, Yingjie [1 ]
Xiao, Jie [1 ]
Zeng, Xiaoyuan [1 ]
Zhai, Shuo [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Natl & Local Joint Engn Res Ctr Lithium ion Batter, Key Lab Adv Battery Mat Yunnan Prov, Kunming 650093, Peoples R China
[2] Shenzhen Univ, Inst Deep Earth Sci & Green Energy, Guangdong Prov Key Lab Deep Earth Sci & Geothermal, Shenzhen 518060, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2023年 / 6卷 / 21期
基金
美国国家科学基金会;
关键词
solid oxide fuel cell; direct carbon; all-solid-state; doped lanthanum gallate; raw browncoal; CARBON FUEL; IONIC-CONDUCTIVITY; DOPED LAGAO3; OXIDE; MICROSTRUCTURE; PEROVSKITE; COMPOSITE; ANODE;
D O I
10.1021/acsaem.3c01901
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The direct carbon solid oxide fuel cell (DC-SOFC) is a potential energy conversion device that cleanly and effectively utilizes various carbon resources to generate electric power through electrochemical conversion. Recently, DC-SOFCs utilizing real-world coal fuel have gained great momentum due to the "dual carbon strategic goals". Here, we report high-performance La0.9Sr0.1Ga0.8Mg0.2O3-delta (LSGM) electrolyte-supported DC-SOFCs, by integrating Ag-Gd0.1Ce0.9O2-delta (GDC) as symmetrical electrodes, which enable highly efficient utilization of raw brown coal as fuel. As a comparison, the performances of the conventional yttria-stabilized zirconia (YSZ) electrolyte supported-DC-SOFCs are also investigated. Fueled by raw brown coal, the LSGM-based cells can deliver a maximum power density of 367 mW cm(-2) at 850 degrees C, which is distinctly superior than that of the YSZ-based cells (249 mW cm(-2)). In addition, stability tests reveal that under a discharge current of 0.15 A, the cell can achieve a discharge time of 4.38 h and a better fuel utilization of 14.8%, indicating that a large current discharge is more propitious for the LSGM-based DC-SOFCs fueled by raw brown coal to achieve higher fuel utilization. This study exhibits the enormous potential of LSGM as an electrolyte material for high-performance direct brown coal fuel cells and provides direction guidance for the optimization of discharge operation of DC-SOFCs directly utilizing brown coal in consideration of fuel utilization.
引用
收藏
页码:11043 / 11050
页数:8
相关论文
共 50 条
  • [21] Synthesis of La0.9Sr0.1Ga0.8Mg0.2O3-δ Powder by a Two-Step Doping Method
    Zhong Haitao
    Ai Desheng
    Tan Wei
    Lin Xuping
    RARE METAL MATERIALS AND ENGINEERING, 2013, 42 : 704 - 707
  • [22] Preparation and characterization of La0.9Sr0.1Ga0.8Mg0.2O3-δ thin film on the porous cathode for SOFC
    Liu, Bangwu
    Tang, Lidan
    Zhang, Yue
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (01) : 440 - 445
  • [23] Electrochemical Characterization of La0.9Sr0.1Ga0.8Mg0.2O3-δ Thin Film Electrolyte Deposited by Radio Frequency Magnetron Sputtering
    Endo, Y.
    Terai, T.
    Suzuki, A.
    SOLID STATE IONIC DEVICES 10, 2014, 64 (02): : 183 - 189
  • [24] Influence of synthesis route on physicochemical properties of nanostructured electrolyte material La0.9Sr0.1Ga0.8Mg0.2O3-δ for IT-SOFCs
    Chaubey, Nityanand
    Wani, B. N.
    Bharadwaj, S. R.
    Chattopadhyaya, M. C.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2013, 112 (01) : 155 - 164
  • [25] Compatibility of La0.9Sr0.1Ga0.8Mg0.2O2.85 as the electrolyte for SOFCs
    Yamaji, K
    Horita, T
    Ishikawa, M
    Sakai, N
    Yokokawa, H
    SOLID STATE IONICS, 1998, 108 (1-4) : 415 - 421
  • [26] Influence of small amounts of gallium oxide addition on ionic conductivity of La0.9Sr0.1Ga0.8Mg0.2O3-δ solid electrolyte
    Reis, S. L.
    Muccillo, E. N. S.
    CERAMICS INTERNATIONAL, 2018, 44 (01) : 115 - 119
  • [27] Synthesis of La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte via ethylene glycol route and its characterizations for IT-SOFC
    Raghvendra
    Singh, Rajesh Kumar
    Singh, Prabhakar
    CERAMICS INTERNATIONAL, 2014, 40 (05) : 7177 - 7184
  • [28] Characterization of Ba1.0Sr1.0FeO4+δ cathode on La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte for intermediate temperature solid oxide fuel cells
    Yin, Yanping
    Liu, Bangwu
    Qi, Junjie
    Gu, Yousong
    Liao, Qingliang
    Qin, Zi
    Li, Zhanqiang
    Wang, Qinyu
    Zhang, Yue
    JOURNAL OF POWER SOURCES, 2011, 196 (15) : 6238 - 6241
  • [29] Preparation of dense La0.9Sr0.1Ga0.8Mg0.2O3-δ with high ionic conductivity by solid-state synthesis
    Reis, S. L.
    Muccillo, E. N. S.
    IONICS, 2018, 24 (06) : 1693 - 1700
  • [30] Honeycomb-type solid oxide fuel cells using La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte
    Zhong, Hao
    Matsumoto, Hiroshige
    Ishihara, Tatsumi
    Toriyama, Akira
    CHEMISTRY LETTERS, 2007, 36 (07) : 846 - 847