High-Performance La0.9Sr0.1Ga0.8Mg0.2O3-δ Electrolyte-Based Direct Raw Brown Coal Fuel Cells

被引:6
|
作者
Chen, Xiao [1 ]
Wu, Can [1 ]
Hao, Senran [1 ]
Liu, Boyuan [1 ]
Lu, Tengda [1 ]
Dong, Peng [1 ]
Zhang, Yingjie [1 ]
Xiao, Jie [1 ]
Zeng, Xiaoyuan [1 ]
Zhai, Shuo [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Natl & Local Joint Engn Res Ctr Lithium ion Batter, Key Lab Adv Battery Mat Yunnan Prov, Kunming 650093, Peoples R China
[2] Shenzhen Univ, Inst Deep Earth Sci & Green Energy, Guangdong Prov Key Lab Deep Earth Sci & Geothermal, Shenzhen 518060, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2023年 / 6卷 / 21期
基金
美国国家科学基金会;
关键词
solid oxide fuel cell; direct carbon; all-solid-state; doped lanthanum gallate; raw browncoal; CARBON FUEL; IONIC-CONDUCTIVITY; DOPED LAGAO3; OXIDE; MICROSTRUCTURE; PEROVSKITE; COMPOSITE; ANODE;
D O I
10.1021/acsaem.3c01901
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The direct carbon solid oxide fuel cell (DC-SOFC) is a potential energy conversion device that cleanly and effectively utilizes various carbon resources to generate electric power through electrochemical conversion. Recently, DC-SOFCs utilizing real-world coal fuel have gained great momentum due to the "dual carbon strategic goals". Here, we report high-performance La0.9Sr0.1Ga0.8Mg0.2O3-delta (LSGM) electrolyte-supported DC-SOFCs, by integrating Ag-Gd0.1Ce0.9O2-delta (GDC) as symmetrical electrodes, which enable highly efficient utilization of raw brown coal as fuel. As a comparison, the performances of the conventional yttria-stabilized zirconia (YSZ) electrolyte supported-DC-SOFCs are also investigated. Fueled by raw brown coal, the LSGM-based cells can deliver a maximum power density of 367 mW cm(-2) at 850 degrees C, which is distinctly superior than that of the YSZ-based cells (249 mW cm(-2)). In addition, stability tests reveal that under a discharge current of 0.15 A, the cell can achieve a discharge time of 4.38 h and a better fuel utilization of 14.8%, indicating that a large current discharge is more propitious for the LSGM-based DC-SOFCs fueled by raw brown coal to achieve higher fuel utilization. This study exhibits the enormous potential of LSGM as an electrolyte material for high-performance direct brown coal fuel cells and provides direction guidance for the optimization of discharge operation of DC-SOFCs directly utilizing brown coal in consideration of fuel utilization.
引用
收藏
页码:11043 / 11050
页数:8
相关论文
共 50 条
  • [1] Electrochemical evaluation of La0.6Sr0.4Co0.8Fe0.2O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathodes for La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte SOFCs
    Guo, Weimin
    Liu, Jiang
    Jin, Chao
    Gao, Hongbo
    Zhang, Yaohui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 473 (1-2) : 43 - 47
  • [2] Ionic Conductivity of Chemically Synthesized La0.9Sr0.1Ga0.8Mg0.2O3-δ Solid Electrolyte
    Reis, S. L.
    Muccillo, E. N. S.
    ELECTROCERAMICS VI, 2014, 975 : 81 - 85
  • [3] Determination of the Crystal Structure of La0.9Sr0.1Ga0.8Mg0.2O3-δ
    Zhang, Jie
    Li, Chenggang
    Chen, Weiguang
    PROCEEDINGS OF THE 2017 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT (ICEESD 2017), 2017, 129 : 1076 - 1079
  • [4] Preparation of dense La0.9Sr0.1Ga0.8Mg0.2O3-δ with high ionic conductivity by solid-state synthesis
    Reis, S. L.
    Muccillo, E. N. S.
    IONICS, 2018, 24 (06) : 1693 - 1700
  • [5] Performance and short-term stability of single-chamber solid oxide fuel cells based on La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte
    Morales, M.
    Roa, J. J.
    Tartaj, J.
    Segarra, M.
    JOURNAL OF POWER SOURCES, 2012, 216 : 417 - 424
  • [6] Preparation and performance of large-area La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte for intermediate temperature solid oxide fuel cell
    Zhu, Xiao-dong
    Zhang, Nai-qing
    Wu, Li-jun
    Sun, Ke-ning
    Yuan, Yi-xing
    JOURNAL OF POWER SOURCES, 2010, 195 (22) : 7583 - 7586
  • [7] Synthesis and characterization of La0.9Sr0.1Ga0.8Mg0.2O3-δ intermediate-temperature electrolyte using conventional solid state reaction
    Li, Minxia
    Zhang, Yaohui
    An, Maozhong
    Lu, Zhe
    Huang, Xiqiang
    Xiao, Juncheng
    Wei, Bo
    Zhu, Xingbao
    Su, Wenhui
    JOURNAL OF POWER SOURCES, 2012, 218 : 233 - 236
  • [8] Influence of small amounts of gallium oxide addition on ionic conductivity of La0.9Sr0.1Ga0.8Mg0.2O3-δ solid electrolyte
    Reis, S. L.
    Muccillo, E. N. S.
    CERAMICS INTERNATIONAL, 2018, 44 (01) : 115 - 119
  • [9] Effective buffer layer thickness of La-doped CeO2 for high durability and performance on La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte supported type solid oxide fuel cells
    Hwang, Kuk-Jin
    Jang, Mi
    Kim, Min Kyu
    Lee, Seok Hee
    Shin, Tae Ho
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (04) : 2674 - 2681
  • [10] Mechanically activated self-propagating high-temperature synthesis of La0.9Sr0.1Ga0.8Mg0.2O3-δ as an electrolyte for SOFC
    Ishikawa, Hiroyuki
    Enoki, Makiko
    Ishihara, Tatsumi
    Akiyama, Tomohiro
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 488 (01) : 238 - 242