Parameters prediction in additively manufactured Al-Cu alloy using back propagation neural network

被引:1
|
作者
Lyu, Feiyue [1 ]
Wang, Leilei [1 ]
Zhang, Jiahao [1 ]
Du, Mingzhen [1 ]
Dou, Zhiwei [1 ]
Gao, Chuanyun [2 ]
Zhan, Xiaohong [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing, Peoples R China
[2] AVIC Chengdu Aircraft Ind Grp Co Ltd, Chengdu, Peoples R China
关键词
Wire arc additive manufacturing; artificial neural network; genetic algorithm; mechanical property prediction; process parameter reverse design; BEAD GEOMETRY; MECHANICAL-PROPERTIES; MICROSTRUCTURE; OPTIMIZATION; DEPOSITION;
D O I
10.1080/02670836.2023.2246772
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The relationship between tensile strength, wire feeding speed and travel speed is built based on Back Propagation (BP) neural network during the wire arc additive manufacturing (WAAM) process. The introduction of a genetic algorithm for optimising the BP neural network (GA-BP) and incorporation of additional parameter combinations through the forward model markedly enhance the prediction accuracy of the process parameter reverse model. The BP neural network with a genetic algorithm model exhibits excellent training results, and the sample population regression reaches 0.97. An error value of the optimised model is only 3.10% for wire feeding speed prediction, only 1.55% for travel speed prediction. The GA-BP reverse model optimises WAAM process parameters and achieves a tensile strength exceeding 230 MPa.
引用
收藏
页码:3263 / 3277
页数:15
相关论文
共 50 条
  • [31] Creep deformation and cavitation in an additively manufactured Al-8.6Cu-0.4Mn-0.9Zr (wt%) alloy
    Rakhmonov, Jovid U.
    Michi, Richard
    Bahl, Sumit
    Rahman, Obaidullah
    Frederick, Curtis
    Ziabari, Amir Koushyar
    Dunand, David C.
    Dehoff, Ryan
    Plotkowski, Alex
    Shyam, Amit
    ADDITIVE MANUFACTURING, 2024, 84
  • [32] Evaluation of radio propagation parameters for field strength prediction using neural network
    Monteiro, Bruno
    Cavalcante, Gervasio P. S.
    Gomes, Herminio S.
    Rosario, Danileno M.
    Lima, F. F.
    Junior, H. A.
    2007 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2007, : 888 - +
  • [33] Construction of a health food demand prediction model using a back propagation neural network
    Huang, H.-C., 1600, Maxwell Science Publications, 74, Kenelm Road,, B10, 9AJ, Birmingham, Small Heath, United Kingdom (05): : 896 - 899
  • [34] Defect driven physics-informed neural network framework for fatigue life prediction of additively manufactured materials
    Wang, Lanyi
    Zhu, Shun-Peng
    Luo, Changqi
    Niu, Xiaopeng
    He, Jin-Chao
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2260):
  • [35] Effect of Y on microstructure and high temperature properties of wire-arc-additive-manufactured Al-Cu alloy deposits
    Hao, Tingting
    Wang, Shuai
    Wang, Xu
    Zhai, Yuchun
    Chang, Yunlong
    WELDING INTERNATIONAL, 2022, 36 (09) : 522 - 529
  • [36] Influence of Heat Treatment Parameters on the Corrosion Resistance of Additively Manufactured Ti-6Al-4V Alloy
    Seo, Dong-Il
    Lee, Jae-Bong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (10)
  • [37] Prediction of bead geometry in pulsed GMA welding using back propagation neural network
    Kanti, K. Manikya
    Rao, P. Srinivasa
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2008, 200 (1-3) : 300 - 305
  • [38] Selection of best process parameters for friction stir welded dissimilar Al-Cu alloy: a novel MCDM amalgamated MORSM approach
    Medhi, Tanmoy
    Hussain, Syed Abou Iltaf
    Roy, Barnik Saha
    Saha, Subhash Chandra
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (10)
  • [39] Prediction of mechanical properties of Al-Si-Mg alloy using artificial neural network
    Mishra, Srimant Kumar
    Brahma, Anitarani
    Dutta, Krishna
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2021, 46 (03):
  • [40] Fracture behaviour assessment of the additively manufactured and HPT-processed Al-Si-Cu alloy
    Al-Zubaydi, Ahmed S. J.
    Gao, Nong
    Dzugan, Jan
    Podany, Pavel
    Chen, Ying
    Reed, Philippa A. S.
    MATERIALS SCIENCE AND TECHNOLOGY, 2024,