Prognostic Value of Machine Learning-based Time-to-Event Analysis Using Coronary CT Angiography in Patients with Suspected Coronary Artery Disease

被引:5
作者
Bauer, Maximilian J. [1 ]
Nano, Nejva [1 ]
Adolf, Rafael [1 ]
Will, Albrecht [1 ]
Hendrich, Eva [1 ]
Martinoff, Stefan A. [1 ]
Hadamitzky, Martin [1 ]
机构
[1] Univ Munich, Inst Radiol & Nucl Med, Deutsch Herzzentrum Munchen, Klin Tech, Lazarettstr 36, D-80636 Munich, Germany
关键词
Machine Learning; CT Angiography; Cardiac; Arteries; Heart; Arteriosclerosis; Coronary Artery Disease; COMPUTED TOMOGRAPHIC ANGIOGRAPHY; CLINICAL-OUTCOMES; SURVIVAL ANALYSIS; AMERICAN SOCIETY; PREDICTION; SCORE; ATHEROSCLEROSIS; MORTALITY; SEVERITY; REGISTRY;
D O I
10.1148/ryct.220107
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To assess the long-term prognostic value of a machine learning (ML) approach in time-to-event analyses incorporating coronary CT angiography (CCTA)-derived and clinical parameters in patients with suspected coronary artery disease. Materials and Methods: The retrospective analysis included patients with suspected coronary artery disease who underwent CCTA between October 2004 and December 2017. Major adverse cardiovascular events were defined as the composite of all-cause death, myocardial infarction, unstable angina, or late revascularization (>90 days after index scan). Clinical and CCTA-derived parameters were assessed as predictors of major adverse cardiovascular events and incorporated into two models: a Cox proportional hazards model with recursive feature elimination and an ML model based on random survival forests. Both models were trained and validated by employing repeated nested cross-validation. Harrell concordance index (C-index) was used to assess the predictive power. Results: A total of 5457 patients (mean age, 61 years 11 [SD]; 3648 male patients) were evaluated. The predictive power of the ML model (C-index, 0.74; 95% CI: 0.71, 0.76) was significantly higher than the Cox model (C-index, 0.71; 95% CI: 0.68, 0.74; P = .02). The ML model also outperformed the segment stenosis score (C-index, 0.69; 95% CI: 0.66, 0.72; P < .001), which was the best performing CCTA-derived parameter, and patient age (C-index, 0.66; 95% CI: 0.63, 0.69; P < .001), the best performing clinical parameter. Conclusion: An ML model for time-to-event analysis based on random survival forests had higher performance in predicting major adverse cardiovascular events compared with established clinical or CCTA-derived metrics and a conventional Cox model.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging [J].
Al'Aref, Subhi J. ;
Anchouche, Khalil ;
Singh, Gurpreet ;
Slomka, Piotr J. ;
Kolli, Kranthi K. ;
Kumar, Amit ;
Pandey, Mohit ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Beecy, Ashley N. ;
Berman, Daniel S. ;
Leipsic, Jonathan ;
Nieman, Koen ;
Andreini, Daniele ;
Pontone, Gianluca ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Chang, Hyuk-Jae ;
Narula, Jagat ;
Bax, Jeroen J. ;
Guan, Yuanfang ;
Min, James K. .
EUROPEAN HEART JOURNAL, 2019, 40 (24) :1975-+
[2]   Long-term prognostic impact of CT-Leaman score in patients with non-obstructive CAD: Results from the COronary CT Angiography EvaluatioN For Clinical Outcomes InteRnational Multicenter (CONFIRM) study [J].
Andreini, Daniele ;
Pontone, Gianluca ;
Mushtaq, Saima ;
Gransar, Heidi ;
Conte, Edoardo ;
Bartorelli, Antonio L. ;
Pepi, Mauro ;
Opolski, Maksymilian P. ;
Hartaigh, Briain O. ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Achenbach, Stephan ;
Al-Mallah, Mouaz ;
Cademartiri, Filippo ;
Callister, Tracy Q. ;
Chang, Hyuk-Jae ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Cury, Ricardo ;
Delago, Augustin ;
Hadamitzky, Martin ;
Hausleiter, Joerg ;
Feuchtner, Gudrun ;
Kim, Yong-Jin ;
Kaufmann, Philipp A. ;
Leipsic, Jonathon ;
Lin, Fay Y. ;
Maffei, Erica ;
Raff, Gilbert ;
Shaw, Leslee J. ;
Villines, Todd C. ;
Dunning, Allison ;
Marques, Hugo ;
Rubinshtein, Ronen ;
Hindoyan, Niree ;
Gomez, Millie ;
Min, Jmaes K. .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2017, 231 :18-25
[3]  
[Anonymous], 2020, R LANG ENV STAT COMP
[4]  
Austen W G, 1975, Circulation, V51, P5
[5]  
Breiman L, 2001, MACH LEARN, V45, P5, DOI [10.1186/s12859-018-2419-4, 10.3322/caac.21834]
[6]   Statistical modeling: The two cultures [J].
Breiman, L .
STATISTICAL SCIENCE, 2001, 16 (03) :199-215
[7]   Incremental Prognostic Value of Cardiac Computed Tomography in Coronary Artery Disease Using CONFIRM COroNary Computed Tomography Angiography Evaluation for Clinical Outcomes: An InteRnational Multicenter Registry [J].
Chow, Benjamin J. W. ;
Small, Gary ;
Yam, Yeung ;
Chen, Li ;
Achenbach, Stephan ;
Al-Mallah, Mouaz ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Cademartiri, Filippo ;
Callister, Tracy Q. ;
Chang, Hyuk-Jae ;
Cheng, Victor ;
Chinnaiyan, Kavitha M. ;
Delago, Augustin ;
Dunning, Allison ;
Hadamitzky, Martin ;
Hausleiter, Joerg ;
Kaufmann, Philipp ;
Lin, Fay ;
Maffei, Erica ;
Raff, Gilbert L. ;
Shaw, Leslee J. ;
Villines, Todd C. ;
Min, James K. .
CIRCULATION-CARDIOVASCULAR IMAGING, 2011, 4 (05) :463-472
[8]   Prognostic Value of 64-Slice Cardiac Computed Tomography Severity of Coronary Artery Disease, Coronary Atherosclerosis, and Left Ventricular Ejection Fraction [J].
Chow, Benjamin J. W. ;
Wells, George A. ;
Chen, Li ;
Yam, Yeung ;
Galiwango, Paul ;
Abraham, Arun ;
Sheth, Tej ;
Dennie, Carole ;
Beanlands, Rob S. ;
Ruddy, Terrence D. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2010, 55 (10) :1017-1028
[9]   Survival analysis part I: Basic concepts and first analyses [J].
Clark, TG ;
Bradburn, MJ ;
Love, SB ;
Altman, DG .
BRITISH JOURNAL OF CANCER, 2003, 89 (02) :232-238
[10]   CAD-RADS™ Coronary Artery Disease - Reporting and Data System. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology [J].
Cury, Ricardo C. ;
Abbara, Suhny ;
Achenbach, Stephan ;
Agatston, Arthur ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Dill, Karin E. ;
Jacobs, Jill E. ;
Maroules, Christopher D. ;
Rubin, Geoffrey D. ;
Rybicki, Frank J. ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Stillman, Arthur E. ;
White, Charles S. ;
Woodard, Pamela K. ;
Leipsic, Jonathon A. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2016, 10 (04) :269-281