Humidity Sensor Composed of Laser-Induced Graphene Electrode and Graphene Oxide for Monitoring Respiration and Skin Moisture

被引:6
|
作者
Fei, Xianxiang [1 ]
Huang, Junyi [2 ]
Shi, Wenqing [1 ]
机构
[1] Guangdong Ocean Univ, Sch Elect & Informat Engn, Zhanjiang 524088, Peoples R China
[2] Guangdong Ocean Univ, Coll Mech Engn, Zhanjiang 524088, Peoples R China
基金
中国国家自然科学基金;
关键词
laser-induced graphene; humidity sensors; respiration monitoring; graphene oxide; interdigital electrode; SENSITIVITY;
D O I
10.3390/s23156784
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Respiratory rate and skin humidity are important physiological signals and have become an important basis for disease diagnosis, and they can be monitored by humidity sensors. However, it is difficult to employ high-quality humidity sensors on a broad scale due to their high cost and complex fabrication. Here, we propose a reliable, convenient, and efficient method to mass-produce humidity sensors. A capacitive humidity sensor is obtained by ablating a polyimide (PI) film with a picosecond laser to produce an interdigital electrode (IDE), followed by drop-casting graphene oxide (GO) as a moisture-sensitive material on the electrode. The sensor has long-time stability, a wide relative humidity (RH) detection range from 10% to 90%, and high sensitivity (3862 pF/%RH). In comparison to previous methods, the technology avoids the complex procedures and expensive costs of conventional interdigital electrode preparation. Furthermore, we discuss the effects of the electrode gap size and the amount of graphene oxide on humidity sensor performance, analyze the humidity sensing mechanism by impedance spectrum, and finally perform the monitoring of human respiratory rate and skin humidity change in a non-contact manner.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Laser-induced graphene
    Tour, James
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [22] Infrared Laser-Induced Graphene Sensor for Tyrosine Detection
    Matias, Tiago A.
    Rocha, Raquel G.
    Faria, Lucas, V
    Richter, Eduardo M.
    Munoz, Rodrigo A. A.
    CHEMELECTROCHEM, 2022, 9 (14)
  • [23] A Pressure and Proximity Sensor Based on Laser-Induced Graphene
    Ye, Jiatong
    Zhao, Tiancong
    Zhang, Hangyu
    SENSORS, 2024, 24 (12)
  • [24] Integrated Sensor Based on Laser-Induced Graphene on Wood
    Li, Chen
    Yang, Yanwei
    Xia, Tian
    Ye, Xiaohui
    Cheng, Guanghua
    Zhongguo Jiguang/Chinese Journal of Lasers, 2022, 49 (02):
  • [25] Multifunctional Flexible Sensor Based on Laser-Induced Graphene
    Han, Tao
    Nag, Anindya
    Simorangkir, Roy B. V. B.
    Afsarimanesh, Nasrin
    Liu, Hangrui
    Mukhopadhyay, Subhas Chandra
    Xu, Yongzhao
    Zhadobov, Maxim
    Sauleau, Ronan
    SENSORS, 2019, 19 (16)
  • [26] Integrated Sensor Based on Laser-Induced Graphene on Wood
    Li Chen
    Yang Yanwei
    Xia Tian
    Ye Xiaohui
    Cheng Guanghua
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2022, 49 (02):
  • [27] Laser-induced graphene gas sensors for environmental monitoring
    Francis, Cadre
    Rektor, Attila
    Valayil-Varghese, Tony
    McKibben, Nicholas
    Estrada, Isaac
    Forbey, Jennifer
    Estrada, David
    FRONTIERS IN CHEMISTRY, 2024, 12
  • [28] Laser-Induced Graphene for Heartbeat Monitoring with HeartPy Analysis
    Vicentic, Teodora
    Rasljic Rafajilovic, Milena
    Ilic, Stefan D.
    Koteska, Bojana
    Madevska Bogdanova, Ana
    Pasti, Igor A.
    Lehocki, Fedor
    Spasenovic, Marko
    SENSORS, 2022, 22 (17)
  • [29] Simultaneous Laser-Induced Reduction and Nitrogen Doping of Graphene Oxide in Titanium Oxide/Graphene Oxide Composites
    Gyoergy, Enikoe
    Perez del Pino, Angel
    Logofatu, Costantin
    Cazan, Cristina
    Duta, Anca
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2014, 97 (09) : 2718 - 2724
  • [30] Simultaneous laser-induced reduction and nitrogen doping of graphene oxide in titanium oxide/graphene oxide composites
    György, Enikö, 1600, Blackwell Publishing Inc., Postfach 10 11 61, 69451 Weinheim, Boschstrabe 12, 69469 Weinheim, Deutschland, 69469, Germany (97):