Modeling conformational states of proteins with AlphaFold

被引:71
作者
Sala, D. [1 ]
Engelberger, F. [1 ]
Mchaourab, H. S. [2 ]
Meiler, J. [1 ,3 ,4 ]
机构
[1] Univ Leipzig, Inst Drug Discovery, Fac Med, D-04103 Leipzig, Germany
[2] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN USA
[3] Vanderbilt Univ, Ctr Struct Biol, Nashville, TN 37240 USA
[4] Ctr Scalable Data Analyt & Artificial Intelligence, Dresden Leipzig, Germany
关键词
DYNAMICS; PREDICTION;
D O I
10.1016/j.sbi.2023.102645
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many proteins exert their function by switching among different structures. Knowing the conformational ensembles affiliated with these states is critical to elucidate key mechanistic aspects that govern protein function. While experimental determination efforts are still bottlenecked by cost, time, and technical challenges, the machine-learning technology AlphaFold showed near experimental accuracy in predicting the three-dimensional structure of monomeric proteins. However, an AlphaFold ensemble of models usually represents a single conformational state with minimal structural heterogeneity. Consequently, several pipelines have been proposed to either expand the structural breadth of an ensemble or bias the prediction toward a desired conformational state. Here, we analyze how those pipelines work, what they can and cannot predict, and future directions.
引用
收藏
页数:9
相关论文
共 72 条
  • [1] Ahdritz G, 2022, bioRxiv, DOI [10.1101/2022.11.20.517210, DOI 10.1101/2022.11.20.517210, 10.1101/2022.11.20.517210v2]
  • [2] Computational methods for exploring protein conformations
    Allison, Jane R.
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2020, 48 (04) : 1707 - 1724
  • [3] Machine learning in protein structure prediction
    AlQuraishi, Mohammed
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2021, 65 : 1 - 8
  • [4] Frozen in time: analyzing molecular dynamics with time-resolved cryo-EM
    Amann, Sascha Josef
    Keihsler, Demian
    Bodrug, Tatyana
    Brown, Nicholas G.
    Haselbach, David
    [J]. STRUCTURE, 2023, 31 (01) : 4 - 19
  • [5] Anand N., 2022, arXiv
  • [6] Baek M, 2023, bioRxiv, DOI [10.1101/2023.05.24.542179, 10.1101/2023.05.24.542179, DOI 10.1101/2023.05.24.542179]
  • [7] Accurate prediction of protein structures and interactions using a three-track neural network
    Baek, Minkyung
    DiMaio, Frank
    Anishchenko, Ivan
    Dauparas, Justas
    Ovchinnikov, Sergey
    Lee, Gyu Rie
    Wang, Jue
    Cong, Qian
    Kinch, Lisa N.
    Schaeffer, R. Dustin
    Millan, Claudia
    Park, Hahnbeom
    Adams, Carson
    Glassman, Caleb R.
    DeGiovanni, Andy
    Pereira, Jose H.
    Rodrigues, Andria V.
    van Dijk, Alberdina A.
    Ebrecht, Ana C.
    Opperman, Diederik J.
    Sagmeister, Theo
    Buhlheller, Christoph
    Pavkov-Keller, Tea
    Rathinaswamy, Manoj K.
    Dalwadi, Udit
    Yip, Calvin K.
    Burke, John E.
    Garcia, K. Christopher
    Grishin, Nick V.
    Adams, Paul D.
    Read, Randy J.
    Baker, David
    [J]. SCIENCE, 2021, 373 (6557) : 871 - +
  • [8] Bozitao Zhong, 2022, HPCAsia 2022 Workshop: International Conference on High Performance Computing in Asia-Pacific Region Workshops, P1, DOI 10.1145/3503470.3503471
  • [9] Advances and challenges in time-resolved macromolecular crystallography
    Branden, Gisela
    Neutze, Richard
    [J]. SCIENCE, 2021, 373 (6558)
  • [10] Can AlphaFold2 predict the impact of missense mutations on structure?
    Buel, Gwen R.
    Walters, Kylie J.
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2022, 29 (01) : 1 - 2