Screening hydrogels for antifibrotic properties by implanting cellularly barcoded alginates in mice and a non-human primate

被引:23
作者
Mukherjee, Sudip [1 ,7 ]
Kim, Boram [1 ]
Cheng, Lauren Y. Y. [1 ]
Doerfert, Michael David [1 ]
Li, Jiaming [1 ]
Hernandez, Andrea [1 ]
Liang, Lily [1 ]
Jarvis, Maria I. I. [1 ]
Rios, Peter D. D. [2 ]
Ghani, Sofia [2 ]
Joshi, Ira [2 ]
Isa, Douglas [2 ]
Ray, Trisha [3 ]
Terlier, Tanguy [4 ]
Fell, Cody [1 ]
Song, Ping [1 ]
Miranda, Roberto N. N. [5 ]
Oberholzer, Jose [6 ]
Zhang, David Yu [1 ,8 ]
Veiseh, Omid [1 ]
机构
[1] Rice Univ, Dept Bioengn, Houston, TX 77005 USA
[2] CellTrans Inc, Chicago, IL USA
[3] Cornell Univ, Dept Biomed Engn, Ithaca, NY USA
[4] Rice Univ, SIMS Lab, Shared Equipment Author, Houston, TX USA
[5] Univ Texas MD Anderson Canc Ctr, Dept Hematopathol, Div Pathol, Lab Med, Houston, TX USA
[6] Univ Virginia, Div Transplant Surg, Charlottesville, VA USA
[7] Indian Inst Technol BHU, Sch Biomed Engn, Varanasi, Uttar Pradesh, India
[8] NuProbe USA, Houston, TX 77054 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
FOREIGN-BODY RESPONSE; HIGH-THROUGHPUT; BIOMATERIALS; MICROBEADS; DELIVERY; RECEPTOR; RODENTS; SYSTEMS; BLOOD;
D O I
10.1038/s41551-023-01016-2
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The throughput of the in vivo screening of hydrogels for antifibrotic properties can be increased by tagging the biomaterials with cells and reading their genotype via next-generation sequencing. Screening implantable biomaterials for antifibrotic properties is constrained by the need for in vivo testing. Here we show that the throughput of in vivo screening can be increased by cellularly barcoding a chemically modified combinatorial library of hydrogel formulations. The method involves the implantation of a mixture of alginate formulations, each barcoded with human umbilical vein endothelial cells from different donors, and the association of the identity and performance of each formulation by genotyping single nucleotide polymorphisms of the cells via next-generation sequencing. We used the method to screen 20 alginate formulations in a single mouse and 100 alginate formulations in a single non-human primate, and identified three lead hydrogel formulations with antifibrotic properties. Encapsulating human islets with one of the formulations led to long-term glycaemic control in a mouse model of diabetes, and coating medical-grade catheters with the other two formulations prevented fibrotic overgrowth. High-throughput screening of barcoded biomaterials in vivo may help identify formulations that enhance the long-term performance of medical devices and of biomaterial-encapsulated therapeutic cells.
引用
收藏
页码:867 / +
页数:31
相关论文
共 53 条
[1]   Foreign body reaction to biomaterials [J].
Anderson, James M. ;
Rodriguez, Analiz ;
Chang, David T. .
SEMINARS IN IMMUNOLOGY, 2008, 20 (02) :86-100
[2]   Fluorescent Polymer Nanoparticles for Cell Barcoding In Vitro and In Vivo [J].
Andreiuk, Bohdan ;
Reisch, Andreas ;
Lindecker, Marion ;
Follain, Gautier ;
Peyrieras, Nadine ;
Goetz, Jacky G. ;
Klymchenko, Andrey S. .
SMALL, 2017, 13 (38)
[3]   Limiting biomaterial fibrosis [J].
Bank, Ruud A. .
NATURE MATERIALS, 2019, 18 (08) :781-781
[4]   Injectable alginate hydrogels for cell delivery in tissue engineering [J].
Bidarra, Silvia J. ;
Barrias, Cristina C. ;
Granja, Pedro L. .
ACTA BIOMATERIALIA, 2014, 10 (04) :1646-1662
[5]   Exploiting Molecular Barcodes in High-Throughput Cellular Assays [J].
Binan, Loic ;
Drobetsky, Elliot A. ;
Costantino, Santiago .
SLAS TECHNOLOGY, 2019, 24 (03) :298-307
[6]   Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques [J].
Bochenek, Matthew A. ;
Veiseh, Omid ;
Vegas, Arturo J. ;
McGarrigle, James J. ;
Qi, Meirigeng ;
Marchese, Enza ;
Omami, Mustafa ;
Doloff, Joshua C. ;
Mendoza-Elias, Joshua ;
Nourmohammadzadeh, Mohammad ;
Khan, Arshad ;
Yeh, Chun-Chieh ;
Xing, Yuan ;
Isa, Douglas ;
Ghani, Sofia ;
Li, Jie ;
Landry, Casey ;
Bader, Andrew R. ;
Olejnik, Karsten ;
Chen, Michael ;
Hollister-Lock, Jennifer ;
Wang, Yong ;
Greiner, Dale L. ;
Weir, Gordon C. ;
Strand, Berit Lokensgard ;
Rokstad, Anne Mari A. ;
Lacik, Igor ;
Langer, Robert ;
Anderson, Daniel G. ;
Oberholzer, Jose .
NATURE BIOMEDICAL ENGINEERING, 2018, 2 (11) :810-821
[7]   A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells [J].
Bose, Suman ;
Volpatti, Lisa R. ;
Thiono, Devina ;
Yesilyurt, Volkan ;
McGladrigan, Collin ;
Tang, Yaoyu ;
Facklam, Amanda ;
Wang, Amy ;
Jhunjhunwala, Siddharth ;
Veiseh, Omid ;
Hollister-Lock, Jennifer ;
Bhattacharya, Chandrabali ;
Weir, Gordon C. ;
Greiner, Dale L. ;
Langer, Robert ;
Anderson, Daniel G. .
NATURE BIOMEDICAL ENGINEERING, 2020, 4 (08) :814-826
[8]   Rapid Biocompatibility Analysis of Materials via In Vivo Fluorescence Imaging of Mouse Models [J].
Bratlie, Kaitlin M. ;
Dang, Tram T. ;
Lyle, Stephen ;
Nahrendorf, Matthias ;
Weissleder, Ralph ;
Langer, Robert ;
Anderson, Daniel G. .
PLOS ONE, 2010, 5 (03)
[9]   High-throughput ultrastructure screening using electron microscopy and fluorescent barcoding [J].
Bykov, Yury S. ;
Cohen, Nir ;
Gabrielli, Natalia ;
Manenschijn, Hetty ;
Welsch, Sonja ;
Chlanda, Petr ;
Kukulski, Wanda ;
Patil, Kiran R. ;
Schuldiner, Maya ;
Briggs, John A. G. .
JOURNAL OF CELL BIOLOGY, 2019, 218 (08) :2797-2811
[10]   The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening [J].
Chatterjee, Kaushik ;
Lin-Gibson, Sheng ;
Wallace, William E. ;
Parekh, Sapun H. ;
Lee, Young Jong ;
Cicerone, Marcus T. ;
Young, Marian F. ;
Simon, Carl G., Jr. .
BIOMATERIALS, 2010, 31 (19) :5051-5062