SCA-LFD: Side-Channel Analysis-Based Load Forecasting Disturbance in the Energy Internet

被引:4
作者
Ding, Li [1 ,2 ]
Wu, Jun [1 ,2 ]
Li, Changlian [3 ]
Jolfaei, Alireza [4 ]
Zheng, Xi [5 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[2] Shanghai Key Lab Integrated Adm Technol Informat S, Shanghai 200240, Peoples R China
[3] China Informat Consulting & Designing Inst Co Ltd, Beijing 100089, Peoples R China
[4] Federat Univ Australia, Internet Commerce Secur Lab, Mt Helen, Vic 3350, Australia
[5] Intelligent Syst Res Ctr, Sydney, NSW 2109, Australia
基金
中国国家自然科学基金;
关键词
Energy Internet (EI); federated learning (FL); side-channel analysis (SCA); BLOCKCHAIN;
D O I
10.1109/TIE.2022.3170641
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The energy Internet (EI) equipment may face threats that attackers poison federated learning (FL) models to disturb electricity load forecasting. To mitigate this vulnerability, it is important to study load forecasting disturbance approaches. This article proposes a side-channel analysis (SCA)-based disturbance approach. First, we design an FL SCA scheme to extract power information from the FL chip running forecasting model. Second, we propose an FL data speculation method using an optimized convolutional neural network trained with SCA information. Third, we design a label-flipping-based poisoning scheme with speculated data characteristics for load forecasting disturbance. Experimental results show attackers can successfully poison and disturb FL-based load forecasting. The average accuracy of EI load data speculation is 99.8%. This work is the first to study EI load forecasting disturbance from an SCA perspective.
引用
收藏
页码:3199 / 3208
页数:10
相关论文
共 31 条
  • [1] Batina L, 2019, PROCEEDINGS OF THE 28TH USENIX SECURITY SYMPOSIUM, P515
  • [2] Bhagoji AN, 2019, PR MACH LEARN RES, V97
  • [3] Blanchard P, 2017, ADV NEUR IN, V30
  • [4] Multi-View 3D Object Detection Network for Autonomous Driving
    Chen, Xiaozhi
    Ma, Huimin
    Wan, Ji
    Li, Bo
    Xia, Tian
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6526 - 6534
  • [5] Cronin P, 2021, PROCEEDINGS OF THE 30TH USENIX SECURITY SYMPOSIUM, P681
  • [6] Fung C, 2020, Arxiv, DOI arXiv:1808.04866
  • [7] Fundamental Technologies in Modern Speech Recognition
    Furui, Sadaoki
    Deng, Li
    Gales, Mark
    Ney, Hermann
    Tokuda, Keiichi
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) : 16 - 17
  • [8] Gu TY, 2019, Arxiv, DOI [arXiv:1708.06733, DOI 10.48550/ARXIV.1708.067331708.06733]
  • [9] Haputhanthri U., 2020, DIAGNO
  • [10] Reducing Power Side-Channel Information Leakage of AES Engines Using Fully Integrated Inductive Voltage Regulator
    Kar, Monodeep
    Singh, Arvind
    Mathew, Sanu K.
    Rajan, Anand
    De, Vivek
    Mukhopadhyay, Saibal
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (08) : 2399 - 2414