spatialMaxent: Adapting species distribution modeling to spatial data

被引:8
作者
Bald, Lisa [1 ]
Gottwald, Jannis [1 ]
Zeuss, Dirk [1 ]
机构
[1] Philipps Univ Marburg, Dept Geog, Environm Informat, Deutschhausstr 12, D-35032 Marburg, Germany
来源
ECOLOGY AND EVOLUTION | 2023年 / 13卷 / 10期
关键词
Maxent; model tuning; NCEAS dataset; open-source software; spatial validation; species distribution modeling; CROSS-VALIDATION; MAXENT; PERFORMANCE; COMPLEXITY; SELECTION;
D O I
10.1002/ece3.10635
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Conventional practices in species distribution modeling lack predictive power when the spatial structure of data is not taken into account. However, choosing a modeling approach that accounts for overfitting during model training can improve predictive performance on spatially separated test data, leading to more reliable models. This study introduces spatialMaxent (), a software that combines state-of-the-art spatial modeling techniques with the popular species distribution modeling software Maxent. It includes forward-variable-selection, forward-feature-selection, and regularization-multiplier tuning based on spatial cross-validation, which enables addressing overfitting during model training by considering the impact of spatial dependency in the training data. We assessed the performance of spatialMaxent using the National Center for Ecological Analysis and Synthesis dataset, which contains over 200 anonymized species across six regions worldwide. Our results show that spatialMaxent outperforms both conventional Maxent and models optimized according to literature recommendations without using a spatial tuning strategy in 80 percent of the cases. spatialMaxent is user-friendly and easily accessible to researchers, government authorities, and conservation practitioners. Therefore, it has the potential to play an important role in addressing pressing challenges of biodiversity conservation.
引用
收藏
页数:13
相关论文
共 47 条
  • [1] Species distribution models rarely predict the biology of real populations
    A. Lee-Yaw, Julie
    L. McCune, Jenny
    Pironon, Samuel
    N. Sheth, Seema
    [J]. ECOGRAPHY, 2022, 2022 (06)
  • [2] Standards for distribution models in biodiversity assessments
    Araujo, Miguel B.
    Anderson, Robert P.
    Marcia Barbosa, A.
    Beale, Colin M.
    Dormann, Carsten F.
    Early, Regan
    Garcia, Raquel A.
    Guisan, Antoine
    Maiorano, Luigi
    Naimi, Babak
    O'Hara, Robert B.
    Zimmermann, Niklaus E.
    Rahbek, Carsten
    [J]. SCIENCE ADVANCES, 2019, 5 (01)
  • [3] Feature tuning improves MAXENT predictions of the potential distribution of Pedicularis longiflora Rudolph and its variant
    Bao, Ru
    Li, Xiaolong
    Zheng, Jianghua
    [J]. PEERJ, 2022, 10
  • [4] Evaluating resource selection functions
    Boyce, MS
    Vernier, PR
    Nielsen, SE
    Schmiegelow, FKA
    [J]. ECOLOGICAL MODELLING, 2002, 157 (2-3) : 281 - 300
  • [5] COP15 Biodiversity Conference Outcome, 2022, Convention on biological diversity website
  • [6] ecospat: an R package to support spatial analyses and modeling of species niches and distributions
    Di Cola, Valeria
    Broennimann, Olivier
    Petitpierre, Blaise
    Breiner, Frank T.
    D'Amen, Manuela
    Randin, Christophe
    Engler, Robin
    Pottier, Julien
    Pio, Dorothea
    Dubuis, Anne
    Pellissier, Loic
    Mateo, Ruben G.
    Hordijk, Wim
    Salamin, Nicolas
    Guisan, Antoine
    [J]. ECOGRAPHY, 2017, 40 (06) : 774 - 787
  • [7] Elith J, 2020, BIODIVERS INFORM, V15, P69
  • [8] A checklist for maximizing reproducibility of ecological niche models
    Feng, Xiao
    Park, Daniel S.
    Walker, Cassondra
    Peterson, A. Townsend
    Merow, Cory
    Popes, Monica
    [J]. NATURE ECOLOGY & EVOLUTION, 2019, 3 (10) : 1382 - 1395
  • [9] Is my species distribution model fit for purpose? Matching data and models to applications
    Guillera-Arroita, Gurutzeta
    Lahoz-Monfort, Jose J.
    Elith, Jane
    Gordon, Ascelin
    Kujala, Heini
    Lentini, Pia E.
    McCarthy, Michael A.
    Tingley, Reid
    Wintle, Brendan A.
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2015, 24 (03): : 276 - 292
  • [10] Predicting species distributions for conservation decisions
    Guisan, Antoine
    Tingley, Reid
    Baumgartner, John B.
    Naujokaitis-Lewis, Ilona
    Sutcliffe, Patricia R.
    Tulloch, Ayesha I. T.
    Regan, Tracey J.
    Brotons, Lluis
    McDonald-Madden, Eve
    Mantyka-Pringle, Chrystal
    Martin, Tara G.
    Rhodes, Jonathan R.
    Maggini, Ramona
    Setterfield, Samantha A.
    Elith, Jane
    Schwartz, Mark W.
    Wintle, Brendan A.
    Broennimann, Olivier
    Austin, Mike
    Ferrier, Simon
    Kearney, Michael R.
    Possingham, Hugh P.
    Buckley, Yvonne M.
    [J]. ECOLOGY LETTERS, 2013, 16 (12) : 1424 - 1435