NORMALIZED SOLUTIONS FOR SOBOLEV CRITICAL SCHRODINGER-BOPP-PODOLSKY SYSTEMS

被引:9
作者
Li, Yuxin [1 ]
Chang, Xiaojun [1 ,2 ]
Feng, Zhaosheng [3 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R China
[3] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
关键词
Normalized solutions; Schrodinger-Bopp-Podolsky system; Lagrange multiplier; ground state; variational method; PRESCRIBED NORM; GROUND-STATES; EXISTENCE; EQUATIONS; WAVES;
D O I
10.58997/ejde.2023.56
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Sobolev critical Schrodinger-Bopp-Podolsky system -Delta u + phi u = lambda u + mu|u| (p-2)u + |u|(4)u in R-3, -Delta phi + Delta(2)phi = 4 pi u(2) in R-3, under the mass constraint integral(R3) u(2) dx = c for some prescribed c > 0, where 2 < p < 8/3, mu > 0 is a parameter, and lambda is an element of R is a Lagrange multiplier. By developing a constraint minimizing approach, we show that the above system admits a local minimizer. Furthermore, we establish the existence of normalized ground state solutions.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 48 条
[1]   Normalized solutions to a Schrodinger-Bopp-Podolsky system under Neumann boundary conditions [J].
Afonso, Danilo G. G. ;
Siciliano, Gaetano .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (02)
[2]  
[Anonymous], 1997, Analysis
[3]   Normalized solutions for a coupled Schrodinger system [J].
Bartsch, Thomas ;
Zhong, Xuexiu ;
Zou, Wenming .
MATHEMATISCHE ANNALEN, 2021, 380 (3-4) :1713-1740
[4]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[5]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[6]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339
[7]   Scaling properties of functionals and existence of constrained minimizers [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) :2486-2507
[8]   Stable standing waves for a class of nonlinear Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (02) :267-280
[9]   Hamilton-Jacobi formalism for Podolsky's electromagnetic theory on the null-plane [J].
Bertin, M. C. ;
Pimentel, B. M. ;
Valcarcel, C. E. ;
Zambrano, G. E. R. .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)
[10]  
Bhimani D, 2024, Arxiv, DOI arXiv:2209.00429