Quantification of van der Waals forces in bimodal and trimodal AFM

被引:5
作者
Santos, Sergio [1 ]
Gadelrab, Karim [2 ]
Elsherbiny, Lamiaa [3 ]
Drexler, Xaver [1 ]
Olukan, Tuza [1 ]
Font, Josep [4 ]
Barcons, Victor [4 ]
Chiesa, Matteo [1 ,3 ]
机构
[1] UiT The Arctic Univ Norway, Dept Phys & Technol, N-9037 Tromso, Norway
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] Khalifa Univ Sci & Technol, Masdar Inst Campus, Lab Energy & Nanosci LENS, Abu Dhabi 127788, U Arab Emirates
[4] UPC BarcelonaTech, Dept Engn Min, Ind i TIC, Manresa 08242, Spain
关键词
MICROSCOPY; MODE; MULTIFREQUENCY; RESOLUTION; SENSITIVITY; EXCITATION;
D O I
10.1063/5.0154196
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The multifrequency formalism is generalized and exploited to quantify attractive forces, i.e., van der Waals interactions, with small amplitudes or gentle forces in bimodal and trimodal atomic force microscopy (AFM). The multifrequency force spectroscopy formalism with higher modes, including trimodal AFM, can outperform bimodal AFM for material property quantification. Bimodal AFM with the second mode is valid when the drive amplitude of the first mode is approximately an order of magnitude larger than that of the second mode. The error increases in the second mode but decreases in the third mode with a decreasing drive amplitude ratio. Externally driving with higher modes provides a means to extract information from higher force derivatives while enhancing the range of parameter space where the multifrequency formalism holds. Thus, the present approach is compatible with robustly quantifying weak long range forces while extending the number of channels available for high resolution.
引用
收藏
页数:10
相关论文
共 54 条
[31]   Van der Waals heterostructures and devices [J].
Liu, Yuan ;
Weiss, Nathan O. ;
Duan, Xidong ;
Cheng, Hung-Chieh ;
Huang, Yu ;
Duan, Xiangfeng .
NATURE REVIEWS MATERIALS, 2016, 1 (09)
[32]   Theory of multifrequency atomic force microscopy [J].
Lozano, Jose R. ;
Garcia, Ricardo .
PHYSICAL REVIEW LETTERS, 2008, 100 (07)
[33]   Chemical bond imaging using torsional and flexural higher eigenmodes of qPlus sensors [J].
Martin-Jimenez, Daniel ;
Ruppert, Michael G. ;
Ihle, Alexander ;
Ahles, Sebastian ;
Wegner, Hermann A. ;
Schirmeisen, Andre ;
Ebeling, Daniel .
NANOSCALE, 2022, 14 (14) :5329-5339
[34]   Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes [J].
Martinez, N. F. ;
Patil, S. ;
Lozano, J. R. ;
Garcia, R. .
APPLIED PHYSICS LETTERS, 2006, 89 (15)
[35]   Nanophotonic biosensors harnessing van der Waals materials [J].
Oh, Sang-Hyun ;
Altug, Hatice ;
Jin, Xiaojia ;
Low, Tony ;
Koester, Steven J. ;
Ivanov, Aleksandar P. ;
Edel, Joshua B. ;
Avouris, Phaedon ;
Strano, Michael S. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[36]   Energy dissipation in van der Waals 2D devices [J].
Ong, Zhun-Yong ;
Bae, Myung-Ho .
2D MATERIALS, 2019, 6 (03)
[37]   Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy [J].
Proksch, Roger .
APPLIED PHYSICS LETTERS, 2006, 89 (11)
[38]   Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy [J].
Rajabifar, Bahram ;
Bajaj, Anil ;
Reifenberger, Ronald ;
Proksch, Roger ;
Raman, Arvind .
NANOSCALE, 2021, 13 (41) :17428-17441
[39]   Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever [J].
Rodríguez, TR ;
García, R .
APPLIED PHYSICS LETTERS, 2004, 84 (03) :449-451
[40]   Quantitative force measurements using frequency modulation atomic force microscopy - theoretical foundations [J].
Sader, JE ;
Uchihashi, T ;
Higgins, MJ ;
Farrell, A ;
Nakayama, Y ;
Jarvis, SP .
NANOTECHNOLOGY, 2005, 16 (03) :S94-S101