Deep Learning-Based Adaptive Beamforming for Interference Cancellation in V2I Scenarios

被引:1
作者
Bhadauria, Prateek [1 ]
Kumar, Ravi [1 ]
Sharma, Sanjay [1 ]
机构
[1] Thapar Inst Engn & Technol, Patiala 147004, Punjab, India
关键词
adaptive beamforming; LSTM; deep learning; V2I; interference; 5G; NEURAL-NETWORK; PREDICTION;
D O I
10.18280/ts.400316
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The fifth-generation (5G) mobile networks rely on advanced smart antenna systems to achieve high accuracy and low latency. In vehicular-to-infrastructure (V2I) scenarios, adaptive beamforming methods play a critical role in enhancing network throughput. This paper proposes a deep learning-based adaptive beamforming technique using long short-term memory (LSTM) networks as beamformers to determine complex weights for the antenna array, thereby mitigating interference in multiuser environments. Unlike conventional minimum variance distortionless beamformers (MVDR) that require knowledge of the direction of arrival (DoA) for the desired signal, the proposed LSTM-based beamformer estimates the desired signal in the presence of interference and noise without DoA knowledge. The LSTM network is trained to predict the angles between user equipment (UE) and roadside units (RSU) using complex time series input data, resulting in a beamformed output. Simulation results demonstrate that the proposed LSTM-based beamforming approach achieves comparable performance in terms of throughput, making it a promising solution for interference cancellation in 5G V2I scenarios.
引用
收藏
页码:1005 / 1014
页数:10
相关论文
共 32 条
[1]  
[Anonymous], 2017, Tech. Rep.
[2]  
Baldi S, 2015, P AMER CONTR CONF, P868, DOI 10.1109/ACC.2015.7170843
[3]   Multi-Layer Perceptron-based Beamformer Design for Next-Generation Full-Duplex Cellular Systems [J].
Biswas, Sudip ;
Singh, Umesh ;
Nag, Kaustuv .
22ND IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD 2021-FALL), 2021, :49-55
[4]   Adaptive Channel Prediction, Beamforming and Scheduling Design for 5G V2I Network: Analytical and Machine Learning Approaches [J].
Bogale, Tadilo Endeshaw ;
Wang, Xianbin ;
Le, Long Bao .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (05) :5055-5067
[5]   Coverage and Rate Analysis of Downlink Cellular Vehicle-to-Everything (C-V2X) Communication [J].
Chetlur, Vishnu Vardhan ;
Dhillon, Harpreet S. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (03) :1738-1753
[6]   A Deep Learning-Based Low Overhead Beam Selection in mmWave Communications [J].
Echigo, Haruhi ;
Cao, Yuwen ;
Bouazizi, Mondher ;
Ohtsuki, Tomoaki .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) :682-691
[7]   A Tutorial on 5G NR V2X Communications [J].
Garcia, Mario H. Castaneda ;
Molina-Galan, Alejandro ;
Boban, Mate ;
Gozalvez, Javier ;
Coll-Perales, Baldomero ;
Sahin, Taylan ;
Kousaridas, Apostolos .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (03) :1972-2026
[8]   Deep Learning for Super-Resolution Channel Estimation and DOA Estimation Based Massive MIMO System [J].
Huang, Hongji ;
Yang, Jie ;
Huang, Hao ;
Song, Yiwei ;
Gui, Guan .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (09) :8549-8560
[9]   New Designs on MVDR Robust Adaptive Beamforming Based on Optimal Steering Vector Estimation [J].
Huang, Yongwei ;
Zhou, Mingkang ;
Vorobyov, Sergiy A. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (14) :3624-3638
[10]   Anomaly Detection in Quasi-Periodic Time Series Based on Automatic Data Segmentation and Attentional LSTM-CNN [J].
Liu, Fan ;
Zhou, Xingshe ;
Cao, Jinli ;
Wang, Zhu ;
Wang, Tianben ;
Wang, Hua ;
Zhang, Yanchun .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (06) :2626-2640