Machine learning-based prediction of diabetes risk by combining exposome and electrocardiographic predictors

被引:2
作者
Shahbazi, Zeinab [1 ]
Camacho, Marina [1 ]
Ruiz, Esmeralda [1 ]
Atehortua, Angelica [1 ]
Lekadir, Karim [1 ]
机构
[1] Univ Barcelona, Dept Math & Comp Sci, Artificial Intelligence Med Lab BCI AIM, Barcelona, Spain
来源
18TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS | 2023年 / 12567卷
关键词
diabetes; risk prediction; ECG signals; exposome factors; machine learning; HEART-RATE-VARIABILITY; AUTOMATED DETECTION; FEATURES; TRANSFORM; DIAGNOSIS;
D O I
10.1117/12.2670078
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Diabetes is a high-burden non-communicable disease affecting more than 532 million people worldwide and resulting in a range of life-threatening comorbidities. Pre-identifying high-risk individuals and applying preventive actions will likely reduce the prevalence and health consequences of diabetes. Under this context, we developed and evaluated the first predictive model of diabetes risk that combines both electrocardiography (ECG) and exposome predictors. A comprehensive list of ECG signals and exposome variables were extracted from the UK Biobank, then used to build and compare a set of machine learning models for diabetes risk prediction. Random Forest combining ECGs and exposome variables achieved an 0.82 +/- 0.03 AUC when predicting diabetes risk. This integrative model outperformed separate models based on exposome factors or ECG signals alone. These preliminary results indicate the potential of low-cost machine learning models trained from ECG and exposome data to predict diabetes years before its onset.
引用
收藏
页数:9
相关论文
共 21 条
[1]   Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method [J].
Acharya, U. Rajendra ;
Sudarshan, Vidya K. ;
Ghista, Dhanjoo N. ;
Lim, Wei Jie Eugene ;
Molinari, Filippo ;
Sankaranarayanan, Meena .
KNOWLEDGE-BASED SYSTEMS, 2015, 81 :56-64
[2]   Automated identification of normal and diabetes heart rate signals using nonlinear measures [J].
Acharya, U. Rajendra ;
Faust, Oliver ;
Kadri, Nahrizul Adib ;
Suri, Jasjit S. ;
Yu, Wenwei .
COMPUTERS IN BIOLOGY AND MEDICINE, 2013, 43 (10) :1523-1529
[3]   An integrated diabetic index using heart rate variability signal features for diagnosis of diabetes [J].
Acharya, U. Rajendra ;
Faust, Oliver ;
Sree, S. Vinitha ;
Ghista, Dhanjoo N. ;
Dua, Sumeet ;
Joseph, Paul ;
Ahamed, V. I. Thajudin ;
Janarthanan, Nittiagandhi ;
Tamura, Toshiyo .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2013, 16 (02) :222-234
[4]  
[Anonymous], 2008, International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering
[5]   Comparison of fast Fourier transform and autoregressive spectral analysis for the study of heart rate variability in diabetic patients [J].
Chemla, D ;
Young, J ;
Badilini, F ;
Malson-Blanche, P ;
Affres, H ;
Lecarpentier, Y ;
Chanson, P .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2005, 104 (03) :307-313
[6]   Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019 [J].
Cousin, Ewerton ;
Duncan, Bruce B. ;
Stein, Caroline ;
Ong, Kanyin Liane ;
Vos, Theo ;
Abbafati, Cristiana ;
Abbasi-Kangevari, Mohsen ;
Abdelmasseh, Michael ;
Abdoli, Amir ;
Abd-Rabu, Rami ;
Abolhassani, Hassan ;
Abu-Gharbieh, Eman ;
Accrombessi, Manfred Mario Kokou ;
Adnani, Qorinah Estiningtyas Sakilah ;
Afzal, Muhammad Sohail ;
Agarwal, Gina ;
Agrawaal, Krishna K. ;
Agudelo-Botero, Marcela ;
Ahinkorah, Bright Opoku ;
Ahmad, Sajjad ;
Ahmad, Tauseef ;
Ahmadi, Keivan ;
Ahmadi, Sepideh ;
Ahmadi, Ali ;
Ahmed, Ali ;
Salih, Yusra Ahmed ;
Akande-Sholabi, Wuraola ;
Akram, Tayyaba ;
Al Hamad, Hanadi ;
Al-Aly, Ziyad ;
Alcalde-Rabanal, Jacqueline Elizabeth ;
Alipour, Vahid ;
Aljunid, Syed Mohamed ;
Al-Raddadi, Rajaa M. ;
Alvis-Guzman, Nelson ;
Amini, Saeed ;
Ancuceanu, Robert ;
Andrei, Tudorel ;
Andrei, Catalina Liliana ;
Anjana, Ranjit Mohan ;
Ansar, Adnan ;
Antonazzo, Ippazio Cosimo ;
Antony, Benny ;
Anyasodor, Anayochukwu Edward ;
Arabloo, Jalal ;
Arizmendi, Damian ;
Armocida, Benedetta ;
Artamonov, Anton A. ;
Arulappan, Judie ;
Aryan, Zahra .
LANCET DIABETES & ENDOCRINOLOGY, 2022, 10 (03) :177-192
[7]  
Diamant N., 2022, CARDIOVASC DIGIT HLT
[8]   Linear and non-linear analysis of cardiac health in diabetic subjects [J].
Faust, Oliver ;
Acharya, U. Rajendra ;
Molinari, Filippo ;
Chattopadhyay, Subhagata ;
Tamura, Toshiyo .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2012, 7 (03) :295-302
[9]  
Flynn Allyson C, 2005, Aust J Rural Health, V13, P77, DOI 10.1111/j.1440-1854.2005.00658.x
[10]   Automated Detection of Diabetes by Means of Higher Order Spectral Features Obtained from Heart Rate Signals [J].
Jian, Lee Wei ;
Lim, Teik-Cheng .
JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2013, 3 (03) :440-447