Histopathological Image Deep Feature Representation for CBIR in Smart PACS

被引:6
作者
Tommasino, Cristian [1 ]
Merolla, Francesco [3 ]
Russo, Cristiano [1 ]
Staibano, Stefania [2 ]
Rinaldi, Antonio Maria [1 ]
机构
[1] Univ Napoli Federico II, Dept Elect Engn & Informat Technol, Via Claudio 21, I-80125 Naples, Italy
[2] Univ Molise, Dept Med & Hlth Sci V Tiberio, I-86100 Campobasso, Italy
[3] Univ Naples Federico II, Pathol Sect, Dept Adv Biomed Sci, I-80131 Naples, Italy
关键词
Deep learning; Computational pathology; Content-based image retrieval; PACS; COMMUNICATION-SYSTEMS;
D O I
10.1007/s10278-023-00832-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Pathological Anatomy is moving toward computerizing processes mainly due to the extensive digitization of histology slides that resulted in the availability of many Whole Slide Images (WSIs). Their use is essential, especially in cancer diagnosis and research, and raises the pressing need for increasingly influential information archiving and retrieval systems. Picture Archiving and Communication Systems (PACSs) represent an actual possibility to archive and organize this growing amount of data. The design and implementation of a robust and accurate methodology for querying them in the pathology domain using a novel approach are mandatory. In particular, the Content-Based Image Retrieval (CBIR) methodology can be involved in the PACSs using a query-by-example task. In this context, one of many crucial points of CBIR concerns the representation of images as feature vectors, and the accuracy of retrieval mainly depends on feature extraction. Thus, our study explored different representations of WSI patches by features extracted from pre-trained Convolution Neural Networks (CNNs). In order to perform a helpful comparison, we evaluated features extracted from different layers of state-of-the-art CNNs using different dimensionality reduction techniques. Furthermore, we provided a qualitative analysis of obtained results. The evaluation showed encouraging results for our proposed framework.
引用
收藏
页码:2194 / 2209
页数:16
相关论文
共 50 条
[1]  
Alturkistani Hani A, 2015, Glob J Health Sci, V8, P72, DOI [10.5539/gjhs.v8n3p72, 10.5539/gjhs.v8n3p72]
[2]   BACH: Grand challenge on breast cancer histology images [J].
Aresta, Guilherme ;
Araujo, Teresa ;
Kwok, Scotty ;
Chennamsetty, Sai Saketh ;
Safwan, Mohammed ;
Alex, Varghese ;
Marami, Bahram ;
Prastawa, Marcel ;
Chan, Monica ;
Donovan, Michael ;
Fernandez, Gerardo ;
Zeineh, Jack ;
Kohl, Matthias ;
Walz, Christoph ;
Ludwig, Florian ;
Braunewell, Stefan ;
Baust, Maximilian ;
Quoc Dang Vu ;
Minh Nguyen Nhat To ;
Kim, Eal ;
Kwak, Jin Tae ;
Galal, Sameh ;
Sanchez-Freire, Veronica ;
Brancati, Nadia ;
Frucci, Maria ;
Riccio, Daniel ;
Wang, Yaqi ;
Sun, Lingling ;
Ma, Kaiqiang ;
Fang, Jiannan ;
Kone, Ismael ;
Boulmane, Lahsen ;
Campilho, Aurelio ;
Eloy, Catarina ;
Polonia, Antonio ;
Aguiar, Paulo .
MEDICAL IMAGE ANALYSIS, 2019, 56 :122-139
[3]   Deep learning in histopathology: A review [J].
Banerji, Sugata ;
Mitra, Sushmita .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 12 (01)
[4]  
Caicedo JC, 2008, LECT NOTES COMPUT SC, V4993, P51, DOI 10.1007/978-3-540-68636-1_6
[5]   Histology image search using multimodal fusion [J].
Caicedo, Juan C. ;
Vanegas, Jorge A. ;
Paez, Fabian ;
Gonzalez, Fabio A. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2014, 51 :114-128
[6]  
Chen ZW, 2020, Arxiv, DOI arXiv:2001.08437
[7]   Content-based Image Retrieval by Using Deep Learning for Interstitial Lung Disease Diagnosis with Chest CT [J].
Choe, Jooae ;
Hwang, Hye Jeon ;
Seo, Joon Beom ;
Lee, Sang Min ;
Yun, Jihye ;
Kim, Min-Ju ;
Jeong, Jewon ;
Lee, Youngsoo ;
Jin, Kiok ;
Park, Rohee ;
Kim, Jihoon ;
Jeon, Howook ;
Kim, Namkug ;
Yi, Jaeyoun ;
Yu, Donghoon ;
Kim, Byeongsoo .
RADIOLOGY, 2022, 302 (01) :187-197
[8]  
Chollet F, 2017, Arxiv, DOI arXiv:1610.02357
[9]   PICTURE ARCHIVING AND COMMUNICATION-SYSTEMS - AN OVERVIEW [J].
CHOPLIN, RH ;
BOEHME, JM ;
MAYNARD, CD .
RADIOGRAPHICS, 1992, 12 (01) :127-129
[10]   Artificial intelligence and computational pathology [J].
Cui, Miao ;
Zhang, David Y. .
LABORATORY INVESTIGATION, 2021, 101 (04) :412-422