Asymptotic Stability of Fractional-Order Incommensurate Neural Networks

被引:5
作者
Chen, Liping [1 ]
Gu, Panpan [1 ]
Lopes, Antonio M. [2 ]
Chai, Yi [3 ]
Xu, Shuiqing [1 ]
Ge, Suoliang [1 ]
机构
[1] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
[2] Univ Porto, Fac Engn, LAETA, INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[3] Chongqing Univ, Sch Automat, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order systems; Neural networks; Stability; Multi-order systems; FINITE-TIME STABILITY; UNIFORM STABILITY; ROBUST STABILITY; SYSTEMS; MULTISTABILITY; DYNAMICS; CRITERIA; CHAOS;
D O I
10.1007/s11063-022-11095-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The dynamics and stability of fractional-order (FO) neural networks (FONN) and FO memristive neural networks (FOMNN), have received great attention in the last years. However, most research focused merely on commensurate FONN (all neurons have the same order). This paper addresses the stability of a class of incommensurate FONN for the first time. Firstly, using the comparison principle for FO systems with multi-order, the stability of FO nonlinear systems with multi-order is treated similarly to the stability of incommensurate FO linear systems. Then, adopting the stability results of incommensurate FO linear systems, an asymptotic stability criterion for FONN is established. The proposed method is valid for investigating the stability and synchronization of uncertain FONN and FOMNN with multi-order. Numerical simulations illustrate the theoretical results and their effectiveness.
引用
收藏
页码:5499 / 5513
页数:15
相关论文
共 55 条
[1]   Properties of the Binary Black Hole Merger GW150914 [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. ;
Barr, B. .
PHYSICAL REVIEW LETTERS, 2016, 116 (24)
[2]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[3]   Global stability analysis of fractional-order fuzzy BAM neural networks with time delay and impulsive effects [J].
Ali, M. Syed ;
Narayanan, G. ;
Sevgen, Selcuk ;
Shekher, Vineet ;
Arik, Sabri .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 78
[4]  
Amari S., 2003, The handbook of brain theory and neural networks
[5]   THE FRACTIONAL-ORDER DYNAMICS OF BRAIN-STEM VESTIBULOOCULOMOTOR NEURONS [J].
ANASTASIO, TJ .
BIOLOGICAL CYBERNETICS, 1994, 72 (01) :69-79
[6]  
[Anonymous], 2012, Fractional Programming: Theory, Methods and Applications
[7]   Fractional and nD systems: a continuous case [J].
Bachelier, Olivier ;
Dabkowski, Pawel ;
Galkowski, Krzysztof ;
Kummert, Anton .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2012, 23 (03) :329-347
[8]   Fractional-Order Deep Backpropagation Neural Network [J].
Bao, Chunhui ;
Pu, Yifei ;
Zhang, Yi .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
[9]  
Boroomand A, 2009, LECT NOTES COMPUT SC, V5506, P883, DOI 10.1007/978-3-642-02490-0_108
[10]   Stability analysis of multi-term fractional-differential equations with three fractional derivatives [J].
Brandibur, Oana ;
Kaslik, Eva .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (02)